

    

        Faker (Fork)

        v0.19.0



    


  

    Table of contents

    
      



      	Changelog


      	Faker (Fork)





        	
          Modules
          


      	Faker


      	Faker.Address


      	Faker.Address.En


      	Faker.Address.Es


      	Faker.Address.Hy


      	Faker.Address.It


      	Faker.Address.PtBr


      	Faker.Address.Ru


      	Faker.Airports


      	Faker.Airports.En


      	Faker.Airports.PtBr


      	Faker.App


      	Faker.Avatar


      	Faker.Aws.En


      	Faker.Aws.Fr


      	Faker.Aws.PtBr


      	Faker.Aws.PtPt


      	Faker.Beer


      	Faker.Beer.En


      	Faker.Blockchain.Bitcoin


      	Faker.Blockchain.Ethereum


      	Faker.Cannabis


      	Faker.Cannabis.En


      	Faker.Cat


      	Faker.Cat.En


      	Faker.Cat.PtBr


      	Faker.Code


      	Faker.Code.Iban


      	Faker.Color


      	Faker.Color.De


      	Faker.Color.En


      	Faker.Color.Es


      	Faker.Color.Fr


      	Faker.Color.Hy


      	Faker.Color.It


      	Faker.Color.PtBr


      	Faker.Commerce


      	Faker.Commerce.En


      	Faker.Commerce.Hy


      	Faker.Commerce.PtBr


      	Faker.Company


      	Faker.Company.En


      	Faker.Company.Hy


      	Faker.Currency


      	Faker.Date


      	Faker.DateTime


      	Faker.Dog.PtBr


      	Faker.File


      	Faker.Finance


      	Faker.Finance.Stock


      	Faker.Food


      	Faker.Food.En


      	Faker.Food.Hy


      	Faker.Food.PtBr


      	Faker.Fruit.En


      	Faker.Fruit.PtBr


      	Faker.Gov.It


      	Faker.Gov.Us


      	Faker.Industry


      	Faker.Industry.En


      	Faker.Industry.Hy


      	Faker.Internet


      	Faker.Internet.En


      	Faker.Internet.Es


      	Faker.Internet.Hy


      	Faker.Internet.It


      	Faker.Internet.PtBr


      	Faker.Internet.StatusCode


      	Faker.Internet.UserAgent


      	Faker.Lorem


      	Faker.Lorem.Shakespeare


      	Faker.Lorem.Shakespeare.En


      	Faker.Lorem.Shakespeare.Ru


      	Faker.Markdown


      	Faker.Name


      	Faker.Nato


      	Faker.Person


      	Faker.Person.En


      	Faker.Person.Es


      	Faker.Person.Fr


      	Faker.Person.Hy


      	Faker.Person.It


      	Faker.Person.PtBr


      	Faker.Phone.EnGb


      	Faker.Phone.EnUs


      	Faker.Phone.Hy


      	Faker.Phone.PtBr


      	Faker.Phone.PtPt


      	Faker.Pizza


      	Faker.Pokemon


      	Faker.Pokemon.De


      	Faker.Pokemon.En


      	Faker.Pokemon.It


      	Faker.Random


      	Faker.Random.Elixir


      	Faker.StarWars


      	Faker.StarWars.En


      	Faker.String


      	Faker.Superhero


      	Faker.Superhero.En


      	Faker.Team


      	Faker.Team.En


      	Faker.Team.PtBr


      	Faker.UUID


      	Faker.Util


      	Faker.Vehicle


      	Faker.Vehicle.En





        



      

    

  

    
Faker 
    



      
Main module to start application with some helper functions.

      


      
        Summary


  
    Functions
  


    
      
        country()

      


        Returns application country.



    


    
      
        format(str)

      


        Internal function to format string.



    


    
      
        locale()

      


        Returns application locale.



    


    
      
        locale(lang)

      


        Sets application locale.



    


    
      
        localize(function)

      


    


    
      
        mlocale()

      


        Returns application locale ready for module construct.



    


    
      
        random_between(left, right)

      


        Returns a (pseudo) random number as an integer between the range intervals.



    


    
      
        random_bytes(total)

      


        Returns a random bytes.



    


    
      
        random_uniform()

      


        Returns a random float in the value range 0.0 =< x < 1.0.



    


    
      
        sampler(name, data)

      


    


    
      
        samplerp(name, data)

      


    


    
      
        shuffle(enum)

      


        Returns a shuffled enum.



    


    
      
        start()

      


        Starts Faker with default locale.



    


    
      
        start(lang)

      


        Starts Faker with lang locale.



    





      


      
        Functions


        


  
    
      
    
    
      country()



        
          
        

    

  


  

      

          @spec country() :: atom()


      


Returns application country.

  



  
    
      
    
    
      format(str)



        
          
        

    

  


  

      

          @spec format(String.t()) :: String.t()


      


Internal function to format string.
It replaces "#" to random number and "?" to random Latin letter.

  



  
    
      
    
    
      locale()



        
          
        

    

  


  

      

          @spec locale() :: atom()


      


Returns application locale.

  



  
    
      
    
    
      locale(lang)



        
          
        

    

  


  

      

          @spec locale(atom()) :: :ok


      


Sets application locale.

  



  
    
      
    
    
      localize(function)


        (macro)


        
          
        

    

  


  


  



  
    
      
    
    
      mlocale()



        
          
        

    

  


  

      

          @spec mlocale() :: String.t()


      


Returns application locale ready for module construct.

  



  
    
      
    
    
      random_between(left, right)



        
          
        

    

  


  

      

          @spec random_between(integer(), integer()) :: integer()


      


Returns a (pseudo) random number as an integer between the range intervals.
Examples
iex> random_between(3, 7) in [3, 4, 5, 6, 7]
true

  



  
    
      
    
    
      random_bytes(total)



        
          
        

    

  


  

      

          @spec random_bytes(pos_integer()) :: binary()


      


Returns a random bytes.

  



  
    
      
    
    
      random_uniform()



        
          
        

    

  


  

      

          @spec random_uniform() :: float()


      


Returns a random float in the value range 0.0 =< x < 1.0.
Examples
iex> is_float(random_uniform())
true

  



  
    
      
    
    
      sampler(name, data)


        (macro)


        
          
        

    

  


  


  



  
    
      
    
    
      samplerp(name, data)


        (macro)


        
          
        

    

  


  


  



  
    
      
    
    
      shuffle(enum)



        
          
        

    

  


  

      

          @spec shuffle(Enum.t()) :: list()


      


Returns a shuffled enum.

  



  
    
      
    
    
      start()



        
          
        

    

  


  

      

          @spec start() :: :ok


      


Starts Faker with default locale.

  



  
    
      
    
    
      start(lang)



        
          
        

    

  


  

      

          @spec start(atom()) :: :ok


      


Starts Faker with lang locale.

  


        

      


  

    
Faker.Address 
    



      
Functions for generating addresses.

      


      
        Summary


  
    Functions
  


    
      
        building_number()

      


        Return random building number.



    


    
      
        city()

      


        Return city name.



    


    
      
        city_prefix()

      


        Return city prefix.



    


    
      
        city_suffix()

      


        Return city suffix.



    


    
      
        country()

      


        Return country.



    


    
      
        country_code()

      


        Return country code.



    


    
      
        geohash()

      


        Returns a geohash.



    


    
      
        latitude()

      


        Return random latitude.



    


    
      
        longitude()

      


        Return random longitude.



    


    
      
        postcode()

      


        Return random postcode.



    


    
      
        secondary_address()

      


        Return random secondary address.



    


    
      
        state()

      


        Return state.



    


    
      
        state_abbr()

      


        Return state abbr.



    


    
      
        street_address()

      


        Return street address.



    


    
      
        street_address(arg1)

      


        Return street_address/0 or if argument is true adds secondary_address/0.



    


    
      
        street_name()

      


        Return street name.



    


    
      
        street_suffix()

      


        Return street suffix.



    


    
      
        time_zone()

      


        Return time zone.



    


    
      
        zip()

      


        Return random postcode.



    


    
      
        zip_code()

      


        Return random postcode.



    





      


      
        Functions


        


  
    
      
    
    
      building_number()



        
          
        

    

  


  

      

          @spec building_number() :: String.t()


      


Return random building number.
Examples
iex> Faker.Address.building_number()
"15426"
iex> Faker.Address.building_number()
"6"
iex> Faker.Address.building_number()
"0832"
iex> Faker.Address.building_number()
"7"

  



  
    
      
    
    
      city()



        
          
        

    

  


  

      

          @spec city() :: String.t()


      


Return city name.
Examples
iex> Faker.Address.city()
"Elizabeth"
iex> Faker.Address.city()
"Rolfson"
iex> Faker.Address.city()
"West Conor"
iex> Faker.Address.city()
"Hardy"

  



  
    
      
    
    
      city_prefix()



        
          
        

    

  


  

      

          @spec city_prefix() :: String.t()


      


Return city prefix.
Examples
iex> Faker.Address.city_prefix()
"Port"
iex> Faker.Address.city_prefix()
"West"
iex> Faker.Address.city_prefix()
"North"
iex> Faker.Address.city_prefix()
"Lake"

  



  
    
      
    
    
      city_suffix()



        
          
        

    

  


  

      

          @spec city_suffix() :: String.t()


      


Return city suffix.
Examples
iex> Faker.Address.city_suffix()
"burgh"
iex> Faker.Address.city_suffix()
"mouth"
iex> Faker.Address.city_suffix()
"burgh"
iex> Faker.Address.city_suffix()
"view"

  



  
    
      
    
    
      country()



        
          
        

    

  


  

      

          @spec country() :: String.t()


      


Return country.
Examples
iex> Faker.Address.En.country()
"Guinea-Bissau"
iex> Faker.Address.En.country()
"Tuvalu"
iex> Faker.Address.En.country()
"Portugal"
iex> Faker.Address.En.country()
"United Arab Emirates"

  



  
    
      
    
    
      country_code()



        
          
        

    

  


  

      

          @spec country_code() :: String.t()


      


Return country code.
Examples
iex> Faker.Address.country_code()
"IT"
iex> Faker.Address.country_code()
"MR"
iex> Faker.Address.country_code()
"GM"
iex> Faker.Address.country_code()
"CX"

  



  
    
      
    
    
      geohash()



        
          
        

    

  


  

      

          @spec geohash() :: binary()


      


Returns a geohash.
Examples
iex> Faker.Address.geohash()
"1kgw0"
iex> Faker.Address.geohash()
"575152tr612btt"
iex> Faker.Address.geohash()
"20kxxzd9k22m6jedp"
iex> Faker.Address.geohash()
"06kjmd2wtwjp2px"

  



  
    
      
    
    
      latitude()



        
          
        

    

  


  

      

          @spec latitude() :: float()


      


Return random latitude.
Examples
iex> Faker.Address.latitude()
-62.20459142744528
iex> Faker.Address.latitude()
-59.39243543011051
iex> Faker.Address.latitude()
15.346881460762518
iex> Faker.Address.latitude()
-72.94522080668256

  



  
    
      
    
    
      longitude()



        
          
        

    

  


  

      

          @spec longitude() :: float()


      


Return random longitude.
Examples
iex> Faker.Address.longitude()
-124.40918285489056
iex> Faker.Address.longitude()
-118.78487086022102
iex> Faker.Address.longitude()
30.693762921525035
iex> Faker.Address.longitude()
-145.8904416133651

  



  
    
      
    
    
      postcode()



        
          
        

    

  


  

      

          @spec postcode() :: String.t()


      


Return random postcode.
Examples
iex> Faker.Address.postcode()
"01542"
iex> Faker.Address.postcode()
"64610"
iex> Faker.Address.postcode()
"83297"
iex> Faker.Address.postcode()
"05235"

  



  
    
      
    
    
      secondary_address()



        
          
        

    

  


  

      

          @spec secondary_address() :: String.t()


      


Return random secondary address.
Examples
iex> Faker.Address.secondary_address()
"Apt. 154"
iex> Faker.Address.secondary_address()
"Apt. 646"
iex> Faker.Address.secondary_address()
"Suite 083"
iex> Faker.Address.secondary_address()
"Apt. 970"

  



  
    
      
    
    
      state()



        
          
        

    

  


  

      

          @spec state() :: String.t()


      


Return state.
Examples
iex> Faker.Address.state()
"Hawaii"
iex> Faker.Address.state()
"Alaska"
iex> Faker.Address.state()
"Oklahoma"
iex> Faker.Address.state()
"California"

  



  
    
      
    
    
      state_abbr()



        
          
        

    

  


  

      

          @spec state_abbr() :: String.t()


      


Return state abbr.
Examples
iex> Faker.Address.state_abbr()
"HI"
iex> Faker.Address.state_abbr()
"AK"
iex> Faker.Address.state_abbr()
"OK"
iex> Faker.Address.state_abbr()
"CA"

  



  
    
      
    
    
      street_address()



        
          
        

    

  


  

      

          @spec street_address() :: String.t()


      


Return street address.
Examples
iex> Faker.Address.street_address()
"15426 Aniya Mews"
iex> Faker.Address.street_address()
"83297 Jana Spring"
iex> Faker.Address.street_address()
"57 Helene Mission"
iex> Faker.Address.street_address()
"03 Izaiah Land"

  



  
    
      
    
    
      street_address(arg1)



        
          
        

    

  


  

      

          @spec street_address(true | any()) :: String.t()


      


Return street_address/0 or if argument is true adds secondary_address/0.
Examples
iex> Faker.Address.street_address(true)
"15426 Aniya Mews Apt. 832"
iex> Faker.Address.street_address(true)
"7 Jana Spring Suite 570"
iex> Faker.Address.street_address(true)
"030 Kozey Knoll Suite 733"
iex> Faker.Address.street_address(true)
"603 Homenick Shore Suite 981"

  



  
    
      
    
    
      street_name()



        
          
        

    

  


  

      

          @spec street_name() :: String.t()


      


Return street name.
Examples
iex> Faker.Address.street_name()
"Elizabeth Freeway"
iex> Faker.Address.street_name()
"Reese Plaza"
iex> Faker.Address.street_name()
"Aniya Mews"
iex> Faker.Address.street_name()
"Bianka Heights"

  



  
    
      
    
    
      street_suffix()



        
          
        

    

  


  

      

          @spec street_suffix() :: String.t()


      


Return street suffix.
Examples
iex> Faker.Address.street_suffix()
"View"
iex> Faker.Address.street_suffix()
"Locks"
iex> Faker.Address.street_suffix()
"Freeway"
iex> Faker.Address.street_suffix()
"Lodge"

  



  
    
      
    
    
      time_zone()



        
          
        

    

  


  

      

          @spec time_zone() :: String.t()


      


Return time zone.
Examples
iex> Faker.Address.time_zone()
"Europe/Istanbul"
iex> Faker.Address.time_zone()
"Europe/Copenhagen"
iex> Faker.Address.time_zone()
"America/Indiana/Indianapolis"
iex> Faker.Address.time_zone()
"America/Guyana"

  



  
    
      
    
    
      zip()



        
          
        

    

  


  

      

          @spec zip() :: String.t()


      


Return random postcode.
Examples
iex> Faker.Address.zip()
"01542"
iex> Faker.Address.zip()
"64610"
iex> Faker.Address.zip()
"83297"
iex> Faker.Address.zip()
"05235"

  



  
    
      
    
    
      zip_code()



        
          
        

    

  


  

      

          @spec zip_code() :: String.t()


      


Return random postcode.
Examples
iex> Faker.Address.zip_code()
"01542"
iex> Faker.Address.zip_code()
"64610"
iex> Faker.Address.zip_code()
"83297"
iex> Faker.Address.zip_code()
"05235"

  


        

      


  

    
Faker.Address.En 
    



      
Functions for generating addresses in English

      


      
        Summary


  
    Functions
  


    
      
        building_number()

      


        Return random building number.



    


    
      
        city()

      


        Return city name.



    


    
      
        city_prefix()

      


        Return city prefix.



    


    
      
        city_suffix()

      


        Return city suffix.



    


    
      
        country()

      


        Return country.



    


    
      
        country_code()

      


        Return country code.



    


    
      
        secondary_address()

      


        Return random secondary address.



    


    
      
        state()

      


        Return state.



    


    
      
        state_abbr()

      


        Return state abbr.



    


    
      
        street_address()

      


        Return street address.



    


    
      
        street_address(arg1)

      


        Return street_address/0 or if argument is true adds secondary_address/0.



    


    
      
        street_name()

      


        Return street name.



    


    
      
        street_suffix()

      


        Return street suffix.



    


    
      
        time_zone()

      


        Return time zone.



    


    
      
        zip_code()

      


        Return random postcode.



    





      


      
        Functions


        


  
    
      
    
    
      building_number()



        
          
        

    

  


  

      

          @spec building_number() :: String.t()


      


Return random building number.
Examples
iex> Faker.Address.En.building_number()
"15426"
iex> Faker.Address.En.building_number()
"6"
iex> Faker.Address.En.building_number()
"0832"
iex> Faker.Address.En.building_number()
"7"

  



  
    
      
    
    
      city()



        
          
        

    

  


  

      

          @spec city() :: String.t()


      


Return city name.
Examples
iex> Faker.Address.En.city()
"Elizabeth"
iex> Faker.Address.En.city()
"Rolfson"
iex> Faker.Address.En.city()
"West Conor"
iex> Faker.Address.En.city()
"Hardy"

  



  
    
      
    
    
      city_prefix()



        
          
        

    

  


  

      

          @spec city_prefix() :: String.t()


      


Return city prefix.
Examples
iex> Faker.Address.En.city_prefix()
"Port"
iex> Faker.Address.En.city_prefix()
"West"
iex> Faker.Address.En.city_prefix()
"North"
iex> Faker.Address.En.city_prefix()
"Lake"

  



  
    
      
    
    
      city_suffix()



        
          
        

    

  


  

      

          @spec city_suffix() :: String.t()


      


Return city suffix.
Examples
iex> Faker.Address.En.city_suffix()
"burgh"
iex> Faker.Address.En.city_suffix()
"mouth"
iex> Faker.Address.En.city_suffix()
"burgh"
iex> Faker.Address.En.city_suffix()
"view"

  



  
    
      
    
    
      country()



        
          
        

    

  


  

      

          @spec country() :: String.t()


      


Return country.
Examples
iex> Faker.Address.En.country()
"Guinea-Bissau"
iex> Faker.Address.En.country()
"Tuvalu"
iex> Faker.Address.En.country()
"Portugal"
iex> Faker.Address.En.country()
"United Arab Emirates"

  



  
    
      
    
    
      country_code()



        
          
        

    

  


  

      

          @spec country_code() :: String.t()


      


Return country code.
Examples
iex> Faker.Address.En.country_code()
"IT"
iex> Faker.Address.En.country_code()
"MR"
iex> Faker.Address.En.country_code()
"GM"
iex> Faker.Address.En.country_code()
"CX"

  



  
    
      
    
    
      secondary_address()



        
          
        

    

  


  

      

          @spec secondary_address() :: String.t()


      


Return random secondary address.
Examples
iex> Faker.Address.En.secondary_address()
"Apt. 154"
iex> Faker.Address.En.secondary_address()
"Apt. 646"
iex> Faker.Address.En.secondary_address()
"Suite 083"
iex> Faker.Address.En.secondary_address()
"Apt. 970"

  



  
    
      
    
    
      state()



        
          
        

    

  


  

      

          @spec state() :: String.t()


      


Return state.
Examples
iex> Faker.Address.En.state()
"Hawaii"
iex> Faker.Address.En.state()
"Alaska"
iex> Faker.Address.En.state()
"Oklahoma"
iex> Faker.Address.En.state()
"California"

  



  
    
      
    
    
      state_abbr()



        
          
        

    

  


  

      

          @spec state_abbr() :: String.t()


      


Return state abbr.
Examples
iex> Faker.Address.En.state_abbr()
"HI"
iex> Faker.Address.En.state_abbr()
"AK"
iex> Faker.Address.En.state_abbr()
"OK"
iex> Faker.Address.En.state_abbr()
"CA"

  



  
    
      
    
    
      street_address()



        
          
        

    

  


  

      

          @spec street_address() :: String.t()


      


Return street address.
Examples
iex> Faker.Address.En.street_address()
"15426 Padberg Mews"
iex> Faker.Address.En.street_address()
"83297 Jana Spring"
iex> Faker.Address.En.street_address()
"57 Legros Cletus Field"
iex> Faker.Address.En.street_address()
"32097 Brekke Ladarius Turnpike"

  



  
    
      
    
    
      street_address(arg1)



        
          
        

    

  


  

      

          @spec street_address(true | any()) :: String.t()


      


Return street_address/0 or if argument is true adds secondary_address/0.
Examples
iex> Faker.Address.En.street_address(true)
"15426 Padberg Mews, Apt. 832"
iex> Faker.Address.En.street_address(false)
"7 Jana Spring"
iex> Faker.Address.En.street_address(true)
"57 Legros Cletus Field, Apt. 320"
iex> Faker.Address.En.street_address(false)
"7 Brekke Ladarius Turnpike"

  



  
    
      
    
    
      street_name()



        
          
        

    

  


  

      

          @spec street_name() :: String.t()


      


Return street name.
Examples
iex> Faker.Address.En.street_name()
"Elizabeth Freeway"
iex> Faker.Address.En.street_name()
"Sipes Trycia Glen"
iex> Faker.Address.En.street_name()
"Schiller Delphine Points"
iex> Faker.Address.En.street_name()
"Murphy Shore"

  



  
    
      
    
    
      street_suffix()



        
          
        

    

  


  

      

          @spec street_suffix() :: String.t()


      


Return street suffix.
Examples
iex> Faker.Address.En.street_suffix()
"View"
iex> Faker.Address.En.street_suffix()
"Locks"
iex> Faker.Address.En.street_suffix()
"Freeway"
iex> Faker.Address.En.street_suffix()
"Lodge"

  



  
    
      
    
    
      time_zone()



        
          
        

    

  


  

      

          @spec time_zone() :: String.t()


      


Return time zone.
Examples
iex> Faker.Address.En.time_zone()
"Europe/Istanbul"
iex> Faker.Address.En.time_zone()
"Europe/Copenhagen"
iex> Faker.Address.En.time_zone()
"America/Indiana/Indianapolis"
iex> Faker.Address.En.time_zone()
"America/Guyana"

  



  
    
      
    
    
      zip_code()



        
          
        

    

  


  

      

          @spec zip_code() :: String.t()


      


Return random postcode.
Examples
iex> Faker.Address.En.zip_code()
"01542"
iex> Faker.Address.En.zip_code()
"64610"
iex> Faker.Address.En.zip_code()
"83297"
iex> Faker.Address.En.zip_code()
"05235"

  


        

      


  

    
Faker.Address.Es 
    



      
Functions for generating addresses in Spanish

      


      
        Summary


  
    Functions
  


    
      
        building_number()

      


        Return random building number.



    


    
      
        city()

      


        Return city name.



    


    
      
        city_prefix()

      


        Return city prefix.



    


    
      
        country()

      


        Return country.



    


    
      
        country_code()

      


        Return country code.



    


    
      
        region()

      


        Return region.Source



    


    
      
        secondary_address()

      


        Return random secondary address.



    


    
      
        state()

      


        Return state. But Spain doesn't have states so this calls Faker.Address.Es.region() instead.



    


    
      
        state_abbr()

      


        Return state abbr.



    


    
      
        street_address()

      


        Return street address.



    


    
      
        street_address(arg1)

      


        Return street_address/0 or if argument is true adds secondary_address/0.



    


    
      
        street_name()

      


        Return street name.



    


    
      
        street_prefix()

      


        Return street prefix.



    


    
      
        street_suffix()

      


        Return street suffix.



    


    
      
        time_zone()

      


        Return time zone.



    


    
      
        zip_code()

      


        Return random postcode.



    





      


      
        Functions


        


  
    
      
    
    
      building_number()



        
          
        

    

  


  

      

          @spec building_number() :: String.t()


      


Return random building number.
Examples
iex> Faker.Address.Es.building_number()
"s/n."
iex> Faker.Address.Es.building_number()
"5"
iex> Faker.Address.Es.building_number()
"26"
iex> Faker.Address.Es.building_number()
"61"

  



  
    
      
    
    
      city()



        
          
        

    

  


  

      

          @spec city() :: String.t()


      


Return city name.
Examples
iex> Faker.Address.Es.city()
"Guillermina"
iex> Faker.Address.Es.city()
"Agosto"
iex> Faker.Address.Es.city()
"Burgos Alfonso"
iex> Faker.Address.Es.city()
"María José"

  



  
    
      
    
    
      city_prefix()



        
          
        

    

  


  

      

          @spec city_prefix() :: String.t()


      


Return city prefix.
Examples
iex> Faker.Address.Es.city_prefix()
"Vitoria"
iex> Faker.Address.Es.city_prefix()
"Oviedo"
iex> Faker.Address.Es.city_prefix()
"Talavera de la Reina"
iex> Faker.Address.Es.city_prefix()
"Cáceres"

  



  
    
      
    
    
      country()



        
          
        

    

  


  

      

          @spec country() :: String.t()


      


Return country.
Examples
iex> Faker.Address.Es.country()
"Cabo Verde"
iex> Faker.Address.Es.country()
"Malawi"
iex> Faker.Address.Es.country()
"Bielorusia"
iex> Faker.Address.Es.country()
"Mali"

  



  
    
      
    
    
      country_code()



        
          
        

    

  


  

      

          @spec country_code() :: String.t()


      


Return country code.
Examples
iex> Faker.Address.Es.country_code()
"ES"

  



  
    
      
    
    
      region()



        
          
        

    

  


  

      

          @spec region() :: String.t()


      


Return region.Source
Examples
iex> Faker.Address.Es.region()
"Extremadura"
iex> Faker.Address.Es.region()
"Aragón"
iex> Faker.Address.Es.region()
"País Vasco"
iex> Faker.Address.Es.region()
"Canarias"

  



  
    
      
    
    
      secondary_address()



        
          
        

    

  


  

      

          @spec secondary_address() :: String.t()


      


Return random secondary address.
Examples
iex> Faker.Address.Es.secondary_address()
"Esc. 154"
iex> Faker.Address.Es.secondary_address()
"Esc. 646"
iex> Faker.Address.Es.secondary_address()
"Puerta 083"
iex> Faker.Address.Es.secondary_address()
"Esc. 970"

  



  
    
      
    
    
      state()



        
          
        

    

  


  

      

          @spec state() :: String.t()


      


Return state. But Spain doesn't have states so this calls Faker.Address.Es.region() instead.

  



  
    
      
    
    
      state_abbr()



        
          
        

    

  


  

      

          @spec state_abbr() :: String.t()


      


Return state abbr.
Examples
iex> Faker.Address.Es.state_abbr()
"Ara"
iex> Faker.Address.Es.state_abbr()
"Cbr"
iex> Faker.Address.Es.state_abbr()
"Mad"
iex> Faker.Address.Es.state_abbr()
"Gal"

  



  
    
      
    
    
      street_address()



        
          
        

    

  


  

      

          @spec street_address() :: String.t()


      


Return street address.
Examples
iex> Faker.Address.Es.street_address()
"Arrabal Daniela 26"
iex> Faker.Address.Es.street_address()
"Mercado Navarro s/n."
iex> Faker.Address.Es.street_address()
"Parque Débora Huerta 05"
iex> Faker.Address.Es.street_address()
"Rambla Gutiérrez 02"

  



  
    
      
    
    
      street_address(arg1)



        
          
        

    

  


  

      

          @spec street_address(true | any()) :: String.t()


      


Return street_address/0 or if argument is true adds secondary_address/0.
Examples
iex> Faker.Address.Es.street_address(true)
"Arrabal Daniela 26 Esc. 610"
iex> Faker.Address.Es.street_address(false)
"Parque Débora Huerta 05"
iex> Faker.Address.Es.street_address(false)
"Rambla Gutiérrez 02"
iex> Faker.Address.Es.street_address(false)
"Calle Murillo 2"

  



  
    
      
    
    
      street_name()



        
          
        

    

  


  

      

          @spec street_name() :: String.t()


      


Return street name.
Examples
iex> Faker.Address.Es.street_name()
"Arrabal Daniela"
iex> Faker.Address.Es.street_name()
"Polígono Javier Acosta"
iex> Faker.Address.Es.street_name()
"Urbanización Gerardo Garza"
iex> Faker.Address.Es.street_name()
"Ferrocarril Huerta"

  



  
    
      
    
    
      street_prefix()



        
          
        

    

  


  

      

          @spec street_prefix() :: String.t()


      


Return street prefix.
Examples
iex> Faker.Address.Es.street_prefix()
"Carretera"
iex> Faker.Address.Es.street_prefix()
"Arrabal"
iex> Faker.Address.Es.street_prefix()
"Chalet"
iex> Faker.Address.Es.street_prefix()
"Colegio"

  



  
    
      
    
    
      street_suffix()



        
          
        

    

  


  

      

          @spec street_suffix() :: String.t()


      


Return street suffix.
Examples
iex> Faker.Address.Es.street_suffix()
"de arriba"
iex> Faker.Address.Es.street_suffix()
"Sur"
iex> Faker.Address.Es.street_suffix()
"de abajo"
iex> Faker.Address.Es.street_suffix()
"Norte"

  



  
    
      
    
    
      time_zone()



        
          
        

    

  


  

      

          @spec time_zone() :: String.t()


      


Return time zone.
Examples
iex> Faker.Address.Es.time_zone()
"Australia/Sydney"
iex> Faker.Address.Es.time_zone()
"America/Guyana"
iex> Faker.Address.Es.time_zone()
"Asia/Kathmandu"
iex> Faker.Address.Es.time_zone()
"Europa/Vienna"

  



  
    
      
    
    
      zip_code()



        
          
        

    

  


  

      

          @spec zip_code() :: String.t()


      


Return random postcode.
Examples
iex> Faker.Address.Es.zip_code()
"01542"
iex> Faker.Address.Es.zip_code()
"64610"
iex> Faker.Address.Es.zip_code()
"83297"
iex> Faker.Address.Es.zip_code()
"05235"

  


        

      


  

    
Faker.Address.Hy 
    



      
Functions for generating addresses in Armenian

      


      
        Summary


  
    Functions
  


    
      
        building_number()

      


        Returns a random building number.



    


    
      
        city()

      


        Returns city name.



    


    
      
        city_prefix()

      


        Returns city prefix.



    


    
      
        country()

      


        Returns country.



    


    
      
        secondary_address()

      


        Returns a random secondary address.



    


    
      
        state()

      


        Returns state.



    


    
      
        state_abbr()

      


        Returns state abbr.



    


    
      
        street_address()

      


        Returns street address.



    


    
      
        street_address(arg1)

      


        Returns street_address/0 or if argument is true adds secondary_address/0.



    


    
      
        street_name()

      


        Returns street name.



    


    
      
        street_suffix()

      


        Returns street suffix.



    


    
      
        zip_code()

      


        Returns a random postcode.



    





      


      
        Functions


        


  
    
      
    
    
      building_number()



        
          
        

    

  


  

      

          @spec building_number() :: String.t()


      


Returns a random building number.
Examples
iex> Faker.Address.Hy.building_number()
"1"
iex> Faker.Address.Hy.building_number()
"4"
iex> Faker.Address.Hy.building_number()
"64"
iex> Faker.Address.Hy.building_number()
"108"

  



  
    
      
    
    
      city()



        
          
        

    

  


  

      

          @spec city() :: String.t()


      


Returns city name.
Examples
iex> Faker.Address.Hy.city()
"Ստեփանավան"
iex> Faker.Address.Hy.city()
"Մարալիկ"
iex> Faker.Address.Hy.city()
"Ճամբարակ"
iex> Faker.Address.Hy.city()
"Մեղրի"

  



  
    
      
    
    
      city_prefix()



        
          
        

    

  


  

      

          @spec city_prefix() :: String.t()


      


Returns city prefix.
Examples
iex> Faker.Address.Hy.city_prefix()
"ք."

  



  
    
      
    
    
      country()



        
          
        

    

  


  

      

          @spec country() :: String.t()


      


Returns country.
Examples
iex> Faker.Address.Hy.country()
"Ֆրանսիա"
iex> Faker.Address.Hy.country()
"Նիդերլանդներ"
iex> Faker.Address.Hy.country()
"Ղազախստան"
iex> Faker.Address.Hy.country()
"Թուրքմենստան"

  



  
    
      
    
    
      secondary_address()



        
          
        

    

  


  

      

          @spec secondary_address() :: String.t()


      


Returns a random secondary address.
Examples
iex> Faker.Address.Hy.secondary_address()
"բն. 1"
iex> Faker.Address.Hy.secondary_address()
"բն. 4"
iex> Faker.Address.Hy.secondary_address()
"բն. 64"
iex> Faker.Address.Hy.secondary_address()
"բն. 110"

  



  
    
      
    
    
      state()



        
          
        

    

  


  

      

          @spec state() :: String.t()


      


Returns state.
Examples
iex> Faker.Address.Hy.state()
"Արագածոտն"
iex> Faker.Address.Hy.state()
"Արարատ"
iex> Faker.Address.Hy.state()
"Կոտայք"
iex> Faker.Address.Hy.state()
"Լոռի"

  



  
    
      
    
    
      state_abbr()



        
          
        

    

  


  

      

          @spec state_abbr() :: String.t()


      


Returns state abbr.
Examples
iex> Faker.Address.Hy.state_abbr()
"ԱԳ"
iex> Faker.Address.Hy.state_abbr()
"ԱՐ"
iex> Faker.Address.Hy.state_abbr()
"ԿՏ"
iex> Faker.Address.Hy.state_abbr()
"ԼՌ"

  



  
    
      
    
    
      street_address()



        
          
        

    

  


  

      

          @spec street_address() :: String.t()


      


Returns street address.
Examples
iex> Faker.Address.Hy.street_address()
"Սուրբ Հովհաննեսի 542"
iex> Faker.Address.Hy.street_address()
"Բուռնազյան 61"
iex> Faker.Address.Hy.street_address()
"Լամբրոնի 329"
iex> Faker.Address.Hy.street_address()
"Հանրապետության 5"

  



  
    
      
    
    
      street_address(arg1)



        
          
        

    

  


  

      

          @spec street_address(true | any()) :: String.t()


      


Returns street_address/0 or if argument is true adds secondary_address/0.
Examples
iex> Faker.Address.Hy.street_address(true)
"Սուրբ Հովհաննեսի 542 բն. 4"
iex> Faker.Address.Hy.street_address(false)
"Գյուլբենկյան 0"
iex> Faker.Address.Hy.street_address(true)
"Պուշկինի 29 բն. 0"
iex> Faker.Address.Hy.street_address(false)
"Տիգրան Մեծի 35"

  



  
    
      
    
    
      street_name()



        
          
        

    

  


  

      

          @spec street_name() :: String.t()


      


Returns street name.
Examples
iex> Faker.Address.Hy.street_name()
"Սուրբ Հովհաննեսի"
iex> Faker.Address.Hy.street_name()
"Մոսկովյան"
iex> Faker.Address.Hy.street_name()
"Սերգեյ Փարաջանովի"
iex> Faker.Address.Hy.street_name()
"Պրահայի"

  



  
    
      
    
    
      street_suffix()



        
          
        

    

  


  

      

          @spec street_suffix() :: String.t()


      


Returns street suffix.
Examples
iex> Faker.Address.Hy.street_suffix()
"նրբանցք"
iex> Faker.Address.Hy.street_suffix()
"պողոտա"
iex> Faker.Address.Hy.street_suffix()
"փակուղի"
iex> Faker.Address.Hy.street_suffix()
"փողոց"

  



  
    
      
    
    
      zip_code()



        
          
        

    

  


  

      

          @spec zip_code() :: String.t()


      


Returns a random postcode.
Examples
iex> Faker.Address.Hy.zip_code()
"0154"
iex> Faker.Address.Hy.zip_code()
"2646"
iex> Faker.Address.Hy.zip_code()
"1083"
iex> Faker.Address.Hy.zip_code()
"2970"

  


        

      


  

    
Faker.Address.It 
    



      
Functions for generating addresses in Italian

      


      
        Summary


  
    Functions
  


    
      
        building_number()

      


        Return random building number.



    


    
      
        city()

      


        Return city name.



    


    
      
        city_prefix()

      


        Return city prefix.



    


    
      
        city_suffix()

      


        Return city suffix.



    


    
      
        country()

      


        Return country.
List from http://publications.europa.eu/code/it/it-5000500.htm



    


    
      
        country_code()

      


        Return country code.
List from http://publications.europa.eu/code/it/it-5000500.htm



    


    
      
        province()

      


        Return province name.
Data from https://dait.interno.gov.it/servizi-demografici/documentazione/anagaire-tabelle-comuni-province-consolati-statiterritori
If you call region(), province() or province_abbr() separately you'll end up with
inconsistent data. For example: "Lombardia", "Roma", "GE".
If you want consisten data call region_province_abbr() instead, which will return
something like ["Lombardia", "Milano", "MI"].



    


    
      
        province_abbr()

      


        Return province code.
Data from https://dait.interno.gov.it/servizi-demografici/documentazione/anagaire-tabelle-comuni-province-consolati-statiterritori
If you call region(), province() or province_abbr() separately you'll end up with
inconsistent data. For example: "Lombardia", "Roma", "GE".
If you want consisten data call region_province_abbr() instead, which will return
something like ["Lombardia", "Milano", "MI"].



    


    
      
        region()

      


        Return region.
If you call region(), province() or province_abbr() separately you'll end up with
inconsistent data. For example: "Lombardia", "Roma", "GE".
If you want consisten data call region_province_abbr() instead, which will return
something like ["Lombardia", "Milano", "MI"].



    


    
      
        region_province_abbr()

      


        Return a consistent list containing the region and province names with the province code.
Data from https://dait.interno.gov.it/servizi-demografici/documentazione/anagaire-tabelle-comuni-province-consolati-statiterritori



    


    
      
        secondary_address()

      


        Return random secondary address.



    


    
      
        state()

      


        Return state. But Italy doesn't have states so this calls Faker.Address.It.region() instead



    


    
      
        state_abbr()

      


        There are no state/region abbreviations in Italy.



    


    
      
        street_address()

      


        Return street address.



    


    
      
        street_address(arg1)

      


        Return street_address/0 or if argument is true adds secondary_address/0.



    


    
      
        street_name()

      


        Return street name.



    


    
      
        street_prefix()

      


        Return street prefix.



    


    
      
        time_zone()

      


        Return time zone.



    


    
      
        zip_code()

      


        Return random postcode.



    





      


      
        Functions


        


  
    
      
    
    
      building_number()



        
          
        

    

  


  

      

          @spec building_number() :: String.t()


      


Return random building number.
Examples
iex> Faker.Address.It.building_number()
"154"
iex> Faker.Address.It.building_number()
"64"
iex> Faker.Address.It.building_number()
"1"
iex> Faker.Address.It.building_number()
"832"

  



  
    
      
    
    
      city()



        
          
        

    

  


  

      

          @spec city() :: String.t()


      


Return city name.
Examples
iex> Faker.Address.It.city()
"Dionigi Marittima"
iex> Faker.Address.It.city()
"Quarto Gennaro"
iex> Faker.Address.It.city()
"Sesto Maurizia"
iex> Faker.Address.It.city()
"Case di Taffy"

  



  
    
      
    
    
      city_prefix()



        
          
        

    

  


  

      

          @spec city_prefix() :: String.t()


      


Return city prefix.
Examples
iex> Faker.Address.It.city_prefix()
"Quarto"
iex> Faker.Address.It.city_prefix()
"Castello"
iex> Faker.Address.It.city_prefix()
"Quarto"
iex> Faker.Address.It.city_prefix()
"Santa"

  



  
    
      
    
    
      city_suffix()



        
          
        

    

  


  

      

          @spec city_suffix() :: String.t()


      


Return city suffix.
Examples
iex> Faker.Address.It.city_suffix()
"di sotto"
iex> Faker.Address.It.city_suffix()
"di sopra"
iex> Faker.Address.It.city_suffix()
"Marittima"

  



  
    
      
    
    
      country()



        
          
        

    

  


  

      

          @spec country() :: String.t()


      


Return country.
List from http://publications.europa.eu/code/it/it-5000500.htm
Examples
iex> Faker.Address.It.country()
"Etiopia"
iex> Faker.Address.It.country()
"Cipro"
iex> Faker.Address.It.country()
"Timor Leste"
iex> Faker.Address.It.country()
"Nicaragua"

  



  
    
      
    
    
      country_code()



        
          
        

    

  


  

      

          @spec country_code() :: String.t()


      


Return country code.
List from http://publications.europa.eu/code/it/it-5000500.htm
Examples
iex> Faker.Address.It.country_code()
"CO"
iex> Faker.Address.It.country_code()
"LV"

  



  
    
      
    
    
      province()



        
          
        

    

  


  

      

          @spec province() :: String.t()


      


Return province name.
Data from https://dait.interno.gov.it/servizi-demografici/documentazione/anagaire-tabelle-comuni-province-consolati-statiterritori
If you call region(), province() or province_abbr() separately you'll end up with
inconsistent data. For example: "Lombardia", "Roma", "GE".
If you want consisten data call region_province_abbr() instead, which will return
something like ["Lombardia", "Milano", "MI"].
## Examples

iex> Faker.Address.It.province()
"Barletta-Andria-Trani"
iex> Faker.Address.It.province()
"Trento"
iex> Faker.Address.It.province()
"Pavia"
iex> Faker.Address.It.province()
"Caserta"

  



  
    
      
    
    
      province_abbr()



        
          
        

    

  


  

      

          @spec province_abbr() :: String.t()


      


Return province code.
Data from https://dait.interno.gov.it/servizi-demografici/documentazione/anagaire-tabelle-comuni-province-consolati-statiterritori
If you call region(), province() or province_abbr() separately you'll end up with
inconsistent data. For example: "Lombardia", "Roma", "GE".
If you want consisten data call region_province_abbr() instead, which will return
something like ["Lombardia", "Milano", "MI"].
  ## Examples
iex> Faker.Address.It.province_abbr()
"BA"
iex> Faker.Address.It.province_abbr()
"TR"
iex> Faker.Address.It.province_abbr()
"PG"
iex> Faker.Address.It.province_abbr()
"CE"

  



  
    
      
    
    
      region()



        
          
        

    

  


  

      

          @spec region() :: String.t()


      


Return region.
If you call region(), province() or province_abbr() separately you'll end up with
inconsistent data. For example: "Lombardia", "Roma", "GE".
If you want consisten data call region_province_abbr() instead, which will return
something like ["Lombardia", "Milano", "MI"].
## Examples

iex> Faker.Address.It.region()
"Molise"
iex> Faker.Address.It.region()
"Basilicata"
iex> Faker.Address.It.region()
"Toscana"
iex> Faker.Address.It.region()
"Emilia-Romagna"

  



  
    
      
    
    
      region_province_abbr()



        
          
        

    

  


  

      

          @spec region_province_abbr() :: [String.t()]


      


Return a consistent list containing the region and province names with the province code.
Data from https://dait.interno.gov.it/servizi-demografici/documentazione/anagaire-tabelle-comuni-province-consolati-statiterritori
Examples
iex> Faker.Address.It.region_province_abbr()
["Calabria", "Reggio di Calabria", "RC"]
iex> Faker.Address.It.region_province_abbr()
["Trentino-Alto Adige/Südtirol", "Bolzano/Bozen", "BZ"]
iex> Faker.Address.It.region_province_abbr()
["Puglia", "Bari", "BA"]
iex> Faker.Address.It.region_province_abbr()
["Emilia-Romagna", "Piacenza", "PC"]

  



  
    
      
    
    
      secondary_address()



        
          
        

    

  


  

      

          @spec secondary_address() :: String.t()


      


Return random secondary address.
  ## Examples
iex> Faker.Address.It.secondary_address()
"/A"
iex> Faker.Address.It.secondary_address()
"/B"
iex> Faker.Address.It.secondary_address()
"/A"
iex> Faker.Address.It.secondary_address()
"Edificio 26"

  



  
    
      
    
    
      state()



        
          
        

    

  


  

      

          @spec state() :: String.t()


      


Return state. But Italy doesn't have states so this calls Faker.Address.It.region() instead

  



  
    
      
    
    
      state_abbr()



        
          
        

    

  


  

      

          @spec state_abbr() :: String.t()


      


There are no state/region abbreviations in Italy.

  



  
    
      
    
    
      street_address()



        
          
        

    

  


  

      

          @spec street_address() :: String.t()


      


Return street address.
  ## Examples
iex> Faker.Address.It.street_address()
"Corso Agave, 2"
iex> Faker.Address.It.street_address()
"Viale Keith, 083"
iex> Faker.Address.It.street_address()
"Strada per Liguria, 523"
iex> Faker.Address.It.street_address()
"Viale De Rosa, 03"

  



  
    
      
    
    
      street_address(arg1)



        
          
        

    

  


  

      

          @spec street_address(true | any()) :: String.t()


      


Return street_address/0 or if argument is true adds secondary_address/0.
  ## Examples
iex> Faker.Address.It.street_address(true)
"Corso Agave, 2/B"
iex> Faker.Address.It.street_address(false)
"Via per Piemonte, 832"
iex> Faker.Address.It.street_address(false)
"Vicolo Longo, 2"
iex> Faker.Address.It.street_address(false)
"Via Privata Galli, 2"

  



  
    
      
    
    
      street_name()



        
          
        

    

  


  

      

          @spec street_name() :: String.t()


      


Return street name.
  ## Examples
iex> Faker.Address.It.street_name()
"Corso Agave"
iex> Faker.Address.It.street_name()
"Via Privata Gennaro Mazza"
iex> Faker.Address.It.street_name()
"Vicolo Shaula Lombardi"
iex> Faker.Address.It.street_name()
"Strada per Giuliani"

  



  
    
      
    
    
      street_prefix()



        
          
        

    

  


  

      

          @spec street_prefix() :: String.t()


      


Return street prefix.
  ## Examples
iex> Faker.Address.It.street_prefix()
"Vicolo"
iex> Faker.Address.It.street_prefix()
"Corso"
iex> Faker.Address.It.street_prefix()
"Piazzale"
iex> Faker.Address.It.street_prefix()
"Piazza"

  



  
    
      
    
    
      time_zone()



        
          
        

    

  


  

      

          @spec time_zone() :: String.t()


      


Return time zone.
  ## Examples
iex> Faker.Address.It.time_zone()
"Australia/Sydney"
iex> Faker.Address.It.time_zone()
"America/Guyana"
iex> Faker.Address.It.time_zone()
"Asia/Kathmandu"
iex> Faker.Address.It.time_zone()
"Europa/Vienna"

  



  
    
      
    
    
      zip_code()



        
          
        

    

  


  

      

          @spec zip_code() :: String.t()


      


Return random postcode.
  ## Examples
iex> Faker.Address.It.zip_code()
"01542"
iex> Faker.Address.It.zip_code()
"64610"
iex> Faker.Address.It.zip_code()
"83297"
iex> Faker.Address.It.zip_code()
"05235"

  


        

      


  

    
Faker.Address.PtBr 
    



      
Functions for generating addresses in Portuguese

      


      
        Summary


  
    Functions
  


    
      
        building_number()

      


        Return random building number.



    


    
      
        city()

      


        Return city name.



    


    
      
        city(int)

      


    


    
      
        city_prefix()

      


        Return city suffixes.



    


    
      
        city_suffixes()

      


        Return city suffixes.



    


    
      
        country()

      


        Return country.



    


    
      
        country_code()

      


        Return country code.



    


    
      
        neighborhood()

      


        Return neighborhood.



    


    
      
        secondary_address()

      


        Return random secondary address.



    


    
      
        state()

      


        Return state.



    


    
      
        state_abbr()

      


        Return state abbr.



    


    
      
        street_address()

      


        Return street address.



    


    
      
        street_address(arg1)

      


        Return street_address/0 or if argument is true adds secondary_address/0.



    


    
      
        street_name()

      


        Return street name.



    


    
      
        street_prefix()

      


        Return street prefix.



    


    
      
        time_zone()

      


        Return time zone.



    


    
      
        zip_code()

      


        Return random postcode.



    





      


      
        Functions


        


  
    
      
    
    
      building_number()



        
          
        

    

  


  

      

          @spec building_number() :: String.t()


      


Return random building number.
Examples
iex> Faker.Address.PtBr.building_number()
"s/n"
iex> Faker.Address.PtBr.building_number()
"5426"
iex> Faker.Address.PtBr.building_number()
"6"
iex> Faker.Address.PtBr.building_number()
"0832"

  



  
    
      
    
    
      city()



        
          
        

    

  


  

      

          @spec city() :: String.t()


      


Return city name.
Examples
iex> Faker.Address.PtBr.city()
"Senador Kaique Paulista"
iex> Faker.Address.PtBr.city()
"São Roberta dos Dourados"
iex> Faker.Address.PtBr.city()
"Salto das Flores"
iex> Faker.Address.PtBr.city()
"Kléber"

  



  
    
      
    
    
      city(int)



        
          
        

    

  


  


  



  
    
      
    
    
      city_prefix()



        
          
        

    

  


  

      

          @spec city_prefix() :: String.t()


      


Return city suffixes.
Examples
iex> Faker.Address.PtBr.city_prefix()
"Santo"
iex> Faker.Address.PtBr.city_prefix()
"Senador"
iex> Faker.Address.PtBr.city_prefix()
"Senador"
iex> Faker.Address.PtBr.city_prefix()
"Alta"

  



  
    
      
    
    
      city_suffixes()



        
          
        

    

  


  

      

          @spec city_suffixes() :: String.t()


      


Return city suffixes.
Examples
iex> Faker.Address.PtBr.city_suffixes()
"da Serra"
iex> Faker.Address.PtBr.city_suffixes()
"dos Dourados"
iex> Faker.Address.PtBr.city_suffixes()
"da Serra"
iex> Faker.Address.PtBr.city_suffixes()
"Paulista"

  



  
    
      
    
    
      country()



        
          
        

    

  


  

      

          @spec country() :: String.t()


      


Return country.
Examples
iex> Faker.Address.PtBr.country()
"Ilhas Virgens Britânicas"
iex> Faker.Address.PtBr.country()
"Coreia do Sul"
iex> Faker.Address.PtBr.country()
"Bolívia"
iex> Faker.Address.PtBr.country()
"Mongólia"

  



  
    
      
    
    
      country_code()



        
          
        

    

  


  

      

          @spec country_code() :: String.t()


      


Return country code.
Examples
iex> Faker.Address.PtBr.country_code()
"BR"

  



  
    
      
    
    
      neighborhood()



        
          
        

    

  


  

      

          @spec neighborhood() :: String.t()


      


Return neighborhood.
Examples
iex> Faker.Address.PtBr.neighborhood()
"Granja De Freitas"
iex> Faker.Address.PtBr.neighborhood()
"Novo Ouro Preto"
iex> Faker.Address.PtBr.neighborhood()
"Padre Eustáquio"
iex> Faker.Address.PtBr.neighborhood()
"Nossa Senhora Aparecida"

  



  
    
      
    
    
      secondary_address()



        
          
        

    

  


  

      

          @spec secondary_address() :: String.t()


      


Return random secondary address.
Examples
iex> Faker.Address.PtBr.secondary_address()
"Sala 154"
iex> Faker.Address.PtBr.secondary_address()
"Sala 646"
iex> Faker.Address.PtBr.secondary_address()
"AP 083"
iex> Faker.Address.PtBr.secondary_address()
"Sala 970"

  



  
    
      
    
    
      state()



        
          
        

    

  


  

      

          @spec state() :: String.t()


      


Return state.
Examples
iex> Faker.Address.PtBr.state()
"Rondônia"
iex> Faker.Address.PtBr.state()
"Rio Grande do Sul"
iex> Faker.Address.PtBr.state()
"Distrito Federal"
iex> Faker.Address.PtBr.state()
"Ceará"

  



  
    
      
    
    
      state_abbr()



        
          
        

    

  


  

      

          @spec state_abbr() :: String.t()


      


Return state abbr.
Examples
iex> Faker.Address.PtBr.state_abbr()
"RO"
iex> Faker.Address.PtBr.state_abbr()
"RS"
iex> Faker.Address.PtBr.state_abbr()
"DF"
iex> Faker.Address.PtBr.state_abbr()
"CE"

  



  
    
      
    
    
      street_address()



        
          
        

    

  


  

      

          @spec street_address() :: String.t()


      


Return street address.
Examples
iex> Faker.Address.PtBr.street_address()
"Estação Kaique, 2"
iex> Faker.Address.PtBr.street_address()
"Lagoa Matheus, 0832"
iex> Faker.Address.PtBr.street_address()
"Estrada Diegues, s/n"
iex> Faker.Address.PtBr.street_address()
"Praia Limeira, 020"

  



  
    
      
    
    
      street_address(arg1)



        
          
        

    

  


  

      

          @spec street_address(true | any()) :: String.t()


      


Return street_address/0 or if argument is true adds secondary_address/0.
Examples
iex> Faker.Address.PtBr.street_address(true)
"Estação Kaique, 2 Sala 461"
iex> Faker.Address.PtBr.street_address(false)
"Conjunto Rodrigo, 970"
iex> Faker.Address.PtBr.street_address(false)
"Trecho Davi Luiz Limeira, 020"
iex> Faker.Address.PtBr.street_address(false)
"Sítio Maria Eduarda, 097"

  



  
    
      
    
    
      street_name()



        
          
        

    

  


  

      

          @spec street_name() :: String.t()


      


Return street name.
Examples
iex> Faker.Address.PtBr.street_name()
"Estação Kaique"
iex> Faker.Address.PtBr.street_name()
"Morro Louise Macieira"
iex> Faker.Address.PtBr.street_name()
"Loteamento Maria Alice Junqueira"
iex> Faker.Address.PtBr.street_name()
"Condomínio da Maia"

  



  
    
      
    
    
      street_prefix()



        
          
        

    

  


  

      

          @spec street_prefix() :: String.t()


      


Return street prefix.
Examples
iex> Faker.Address.PtBr.street_prefix()
"Recanto"
iex> Faker.Address.PtBr.street_prefix()
"Estação"
iex> Faker.Address.PtBr.street_prefix()
"Feira"
iex> Faker.Address.PtBr.street_prefix()
"Fazenda"

  



  
    
      
    
    
      time_zone()



        
          
        

    

  


  

      

          @spec time_zone() :: String.t()


      


Return time zone.
Examples
iex> Faker.Address.PtBr.time_zone()
"Australia/Sydney"
iex> Faker.Address.PtBr.time_zone()
"America/Guyana"
iex> Faker.Address.PtBr.time_zone()
"Asia/Kathmandu"
iex> Faker.Address.PtBr.time_zone()
"Europa/Vienna"

  



  
    
      
    
    
      zip_code()



        
          
        

    

  


  

      

          @spec zip_code() :: String.t()


      


Return random postcode.
Examples
iex> Faker.Address.PtBr.zip_code()
"15426461"
iex> Faker.Address.PtBr.zip_code()
"83297052"
iex> Faker.Address.PtBr.zip_code()
"57.020-303"
iex> Faker.Address.PtBr.zip_code()
"09733-760"

  


        

      


  

    
Faker.Address.Ru 
    



      
Functions for generating addresses in Russian

      


      
        Summary


  
    Functions
  


    
      
        country()

      


        Return country.
https://ru.wikipedia.org/wiki/Список_государств



    


    
      
        state()

      


        Return state.
https://ru.wikipedia.org/wiki/Субъекты_Российской_Федерации



    





      


      
        Functions


        


  
    
      
    
    
      country()



        
          
        

    

  


  

      

          @spec country() :: String.t()


      


Return country.
https://ru.wikipedia.org/wiki/Список_государств
Examples
iex> Faker.Address.Ru.country()
"Белоруссия"
iex> Faker.Address.Ru.country()
"Австрия"
iex> Faker.Address.Ru.country()
"Ирландия"
iex> Faker.Address.Ru.country()
"Тринидад и Тобаго"

  



  
    
      
    
    
      state()



        
          
        

    

  


  

      

          @spec state() :: String.t()


      


Return state.
https://ru.wikipedia.org/wiki/Субъекты_Российской_Федерации
Examples
iex> Faker.Address.Ru.state()
"Самарская область"
iex> Faker.Address.Ru.state()
"Орловская область"
iex> Faker.Address.Ru.state()
"Рязанская область"
iex> Faker.Address.Ru.state()
"Волгоградская область"

  


        

      


  

    
Faker.Airports 
    



      
Functions for generating airports related data

      


      
        Summary


  
    Functions
  


    
      
        iata()

      


        Returns a random IATA



    


    
      
        icao()

      


        Returns a random ICAO



    


    
      
        name()

      


    





      


      
        Functions


        


  
    
      
    
    
      iata()



        
          
        

    

  


  

      

          @spec iata() :: String.t()


      


Returns a random IATA
Examples
iex> Faker.Airports.iata()
"UBJ"
iex> Faker.Airports.iata()
"CKB"
iex> Faker.Airports.iata()
"JAL"
iex> Faker.Airports.iata()
"PES"

  



  
    
      
    
    
      icao()



        
          
        

    

  


  

      

          @spec icao() :: String.t()


      


Returns a random ICAO
Examples
iex> Faker.Airports.icao()
"SNOS"
iex> Faker.Airports.icao()
"UNBG"
iex> Faker.Airports.icao()
"KLOM"
iex> Faker.Airports.icao()
"HCME"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      



  


        

      


  

    
Faker.Airports.En 
    



      
Functions for generating airports related data in English

      


      
        Summary


  
    Functions
  


    
      
        name()

      


        Returns a random airport name



    





      


      
        Functions


        


  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random airport name
Examples
iex> Faker.Airports.En.name()
"Union Island International Airport"
iex> Faker.Airports.En.name()
"St. John's International Airport"
iex> Faker.Airports.En.name()
"Jizan Regional Airport"
iex> Faker.Airports.En.name()
"Bisho Airport"

  


        

      


  

    
Faker.Airports.PtBr 
    



      
Functions for generating airports related data in Portuguese

      


      
        Summary


  
    Functions
  


    
      
        name()

      


        Returns a random airport name



    





      


      
        Functions


        


  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random airport name
Examples
iex> Faker.Airports.PtBr.name()
"Aeroporto de Alcântara (QAH/SNCW)"
iex> Faker.Airports.PtBr.name()
"Aeroporto Internacional Presidente Castro Pinto (JPA/SBJP)"
iex> Faker.Airports.PtBr.name()
"Aeroporto Internacional Pinto Martins (FOR/SBFZ)"
iex> Faker.Airports.PtBr.name()
"Aeroporto Internacional Salgado Filho (POA/SBPA)"

  


        

      


  

    
Faker.App 
    



      
Functions for generating app specific properties.

      


      
        Summary


  
    Functions
  


    
      
        author()

      


        Returns an author name.



    


    
      
        name()

      


        Returns an app name.



    


    
      
        semver(opts \\ [])

      


        Returns a SemVer version.



    


    
      
        version()

      


        Returns a version number.



    





      


      
        Functions


        


  
    
      
    
    
      author()



        
          
        

    

  


  

      

          @spec author() :: String.t()


      


Returns an author name.
Examples
iex> Faker.App.author()
"Mr. Ozella Sipes"
iex> Faker.App.author()
"Aniya Schiller"
iex> Faker.App.author()
"Frederique Murphy"
iex> Faker.App.author()
"Rutherford Inc"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns an app name.
Examples
iex> Faker.App.name()
"Redhold"
iex> Faker.App.name()
"Tempsoft"
iex> Faker.App.name()
"Tempsoft"
iex> Faker.App.name()
"Quo Lux"

  



    

  
    
      
    
    
      semver(opts \\ [])



        
          
        

    

  


  

      

          @spec semver(Keyword.t()) :: String.t()


      


Returns a SemVer version.
Options:
	:allow_pre - when true, a pre-release identifier (e.g.: -dev)
will be appended (default: false)
	:allow_build - when true, a build identifier (e.g.: +001)
will be appended (default: false)

Examples
iex> Faker.App.semver()
"5.42.64"
iex> Faker.App.semver()
"0.2.8"
iex> Faker.App.semver()
"7.0.5"
iex> Faker.App.semver()
"5.7.0"

  



  
    
      
    
    
      version()



        
          
        

    

  


  

      

          @spec version() :: String.t()


      


Returns a version number.
Examples
iex> Faker.App.version()
"0.1.5"
iex> Faker.App.version()
"2.6.4"
iex> Faker.App.version()
"0.10"
iex> Faker.App.version()
"3.2"

  


        

      


  

    
Faker.Avatar 
    



      
Functions for generate random urls for avatars.

      


      
        Summary


  
    Functions
  


    
      
        image_url()

      


        Return avatar url with random set and background.



    


    
      
        image_url(slug)

      


        Return avatar url for given slug.



    


    
      
        image_url(width, height)

      


        Return avatar url with random set and background, with size width x height
pixels.



    


    
      
        image_url(slug, width, height)

      


        Return avatar url for given slug, with size width x height pixels.



    





      


      
        Functions


        


  
    
      
    
    
      image_url()



        
          
        

    

  


  

      

          @spec image_url() :: String.t()


      


Return avatar url with random set and background.
Examples
iex> Faker.Avatar.image_url()
"https://robohash.org/set_set1/bgset_bg2/kQqaIfGqxsjFoNIT"
iex> Faker.Avatar.image_url()
"https://robohash.org/set_set2/bgset_bg2/6"
iex> Faker.Avatar.image_url()
"https://robohash.org/set_set2/bgset_bg2/J"
iex> Faker.Avatar.image_url()
"https://robohash.org/set_set3/bgset_bg1/JNth88PrhGDhwp4LNQMt"

  



  
    
      
    
    
      image_url(slug)



        
          
        

    

  


  

      

          @spec image_url(binary()) :: String.t()


      


Return avatar url for given slug.
Examples
iex> Faker.Avatar.image_url("faker")
"https://robohash.org/faker"
iex> Faker.Avatar.image_url("elixir")
"https://robohash.org/elixir"
iex> Faker.Avatar.image_url("plug")
"https://robohash.org/plug"
iex> Faker.Avatar.image_url("ecto")
"https://robohash.org/ecto"

  



  
    
      
    
    
      image_url(width, height)



        
          
        

    

  


  

      

          @spec image_url(integer(), integer()) :: String.t()


      


Return avatar url with random set and background, with size width x height
pixels.
Examples
iex> Faker.Avatar.image_url(200, 200)
"https://robohash.org/set_set2/bgset_bg2/ppkQqaIfGqx?size=200x200"
iex> Faker.Avatar.image_url(800, 600)
"https://robohash.org/set_set2/bgset_bg2/oNITNnu6?size=800x600"
iex> Faker.Avatar.image_url(32, 32)
"https://robohash.org/set_set3/bgset_bg1/J?size=32x32"
iex> Faker.Avatar.image_url(128, 128)
"https://robohash.org/set_set1/bgset_bg2/JNth88PrhGDhwp4LNQMt?size=128x128"

  



  
    
      
    
    
      image_url(slug, width, height)



        
          
        

    

  


  

      

          @spec image_url(binary(), integer(), integer()) :: String.t()


      


Return avatar url for given slug, with size width x height pixels.
Examples
iex> Faker.Avatar.image_url("phoenix", 100, 100)
"https://robohash.org/phoenix?size=100x100"
iex> Faker.Avatar.image_url("haskell", 200, 200)
"https://robohash.org/haskell?size=200x200"
iex> Faker.Avatar.image_url("ocaml", 300, 300)
"https://robohash.org/ocaml?size=300x300"
iex> Faker.Avatar.image_url("idris", 400, 400)
"https://robohash.org/idris?size=400x400"

  


        

      


  

    
Faker.Aws.En 
    



      
Functions for generating AWS information in English

      


      
        Summary


  
    Functions
  


    
      
        ec2_action()

      


        Returns an AWS EC2 Action



    


    
      
        rds_action()

      


        Returns an AWS RDS Action



    


    
      
        region_code()

      


        Returns a random region code available on AWS



    


    
      
        region_name()

      


        Returns a random region name available on AWS



    


    
      
        s3_action()

      


        Returns an AWS S3 Action



    


    
      
        service()

      


        Returns a random AWS service



    





      


      
        Functions


        


  
    
      
    
    
      ec2_action()



        
          
        

    

  


  

      

          @spec ec2_action() :: String.t()


      


Returns an AWS EC2 Action
Example
  iex> Faker.Aws.En.ec2_action()
  "CreateVpcEndpoint"
  iex> Faker.Aws.En.ec2_action()
  "RevokeSecurityGroupEgress"
  iex> Faker.Aws.En.ec2_action()
  "GetTransitGatewayRouteTableAssociations"
  iex> Faker.Aws.En.ec2_action()
  "RunScheduledInstances"

  



  
    
      
    
    
      rds_action()



        
          
        

    

  


  

      

          @spec rds_action() :: String.t()


      


Returns an AWS RDS Action
Example
  iex> Faker.Aws.En.rds_action()
  "DeleteDBClusterEndpoint"
  iex> Faker.Aws.En.rds_action()
  "CopyDBSnapshot"
  iex> Faker.Aws.En.rds_action()
  "ModifyDBParameterGroup"
  iex> Faker.Aws.En.rds_action()
  "DescribeDBClusterSnapshots"

  



  
    
      
    
    
      region_code()



        
          
        

    

  


  

      

          @spec region_code() :: String.t()


      


Returns a random region code available on AWS
Examples
iex> Faker.Aws.En.region_code()
"ap-northeast-1"
iex> Faker.Aws.En.region_code()
"us-east-2"
iex> Faker.Aws.En.region_code()
"eu-south-1"
iex> Faker.Aws.En.region_code()
"af-south-1"

  



  
    
      
    
    
      region_name()



        
          
        

    

  


  

      

          @spec region_name() :: String.t()


      


Returns a random region name available on AWS
Examples
iex> Faker.Aws.En.region_name()
"Asia Pacific (Tokyo)"
iex> Faker.Aws.En.region_name()
"US East (Ohio)"
iex> Faker.Aws.En.region_name()
"Europe (Milan)"
iex> Faker.Aws.En.region_name()
"Africa (Cape Town)"

  



  
    
      
    
    
      s3_action()



        
          
        

    

  


  

      

          @spec s3_action() :: String.t()


      


Returns an AWS S3 Action
Example
  iex> Faker.Aws.En.s3_action()
  "DeleteBucketTagging"
  iex> Faker.Aws.En.s3_action()
  "DeleteObjects"
  iex> Faker.Aws.En.s3_action()
  "PutPublicAccessBlock"
  iex> Faker.Aws.En.s3_action()
  "PutBucketReplication"

  



  
    
      
    
    
      service()



        
          
        

    

  


  

      

          @spec service() :: String.t()


      


Returns a random AWS service
Examples
  iex> Faker.Aws.En.service()
  "AWS Compute Optimizer"
  iex> Faker.Aws.En.service()
  "Ground Station"
  iex> Faker.Aws.En.service()
  "Neptune"
  iex> Faker.Aws.En.service()
  "DataSync"

  


        

      


  

    
Faker.Aws.Fr 
    



      
Functions for generating AWS information in French

      


      
        Summary


  
    Functions
  


    
      
        region_name()

      


        Returns a random region name available on AWS in French



    





      


      
        Functions


        


  
    
      
    
    
      region_name()



        
          
        

    

  


  

      

          @spec region_name() :: String.t()


      


Returns a random region name available on AWS in French
Examples
iex> Faker.Aws.Fr.region_name()
"Asie Pacifique (Tokyo)"
iex> Faker.Aws.Fr.region_name()
"USA Est (Ohio)"
iex> Faker.Aws.Fr.region_name()
"Europe (Milan)"
iex> Faker.Aws.Fr.region_name()
"Afrique (Le Cap)"

  


        

      


  

    
Faker.Aws.PtBr 
    



      
Functions for generating AWS information in Brazilian Portuguese

      


      
        Summary


  
    Functions
  


    
      
        region_name()

      


        Returns a random region name available on AWS



    





      


      
        Functions


        


  
    
      
    
    
      region_name()



        
          
        

    

  


  

      

          @spec region_name() :: String.t()


      


Returns a random region name available on AWS
Examples
iex> Faker.Aws.PtBr.region_name()
"Ásia-Pacífico (Mumbai)"
iex> Faker.Aws.PtBr.region_name()
"Oeste dos EUA (Califórnia do Norte)"
iex> Faker.Aws.PtBr.region_name()
"Leste dos EUA (Virgínia do Norte)"
iex> Faker.Aws.PtBr.region_name()
"Ásia-Pacífico (Hong Kong)"

  


        

      


  

    
Faker.Aws.PtPt 
    



      
Functions for generating AWS information in Portuguese of Portugal

      


      
        Summary


  
    Functions
  


    
      
        region_name()

      


        Returns a random region name available on AWS



    





      


      
        Functions


        


  
    
      
    
    
      region_name()



        
          
        

    

  


  

      

          @spec region_name() :: String.t()


      


Returns a random region name available on AWS
Examples
iex> Faker.Aws.PtPt.region_name()
"Asia Pacifico (Tóquio)"
iex> Faker.Aws.PtPt.region_name()
"EUA Este (Ohio)"
iex> Faker.Aws.PtPt.region_name()
"Europa (Milão)"
iex> Faker.Aws.PtPt.region_name()
"Africa (Cape Town)"

  


        

      


  

    
Faker.Beer 
    



      
Functions for generating Beer related data

      


      
        Summary


  
    Functions
  


    
      
        alcohol()

      


        Returns an alcohol percentage for a beer



    


    
      
        blg()

      


        Returns a blg for a beer



    


    
      
        brand()

      


        Returns a Beer brand string



    


    
      
        hop()

      


        Returns a Hop name string



    


    
      
        ibu()

      


        Returns an IBU(International Bitterness Unit) for a beer



    


    
      
        malt()

      


        Returns a Malt name string



    


    
      
        name()

      


        Returns a Beer name string



    


    
      
        style()

      


        Returns a Style name string



    


    
      
        yeast()

      


        Returns a Yeast name string



    





      


      
        Functions


        


  
    
      
    
    
      alcohol()



        
          
        

    

  


  

      

          @spec alcohol() :: String.t()


      


Returns an alcohol percentage for a beer
Examples
iex> Faker.Beer.alcohol()
"10.1%"
iex> Faker.Beer.alcohol()
"35.4%"
iex> Faker.Beer.alcohol()
"92.6%"
iex> Faker.Beer.alcohol()
"64.6%"

  



  
    
      
    
    
      blg()



        
          
        

    

  


  

      

          @spec blg() :: String.t()


      


Returns a blg for a beer
Examples
iex> Faker.Beer.blg()
"10.1°Blg"
iex> Faker.Beer.blg()
"35.4°Blg"
iex> Faker.Beer.blg()
"92.6°Blg"
iex> Faker.Beer.blg()
"64.6°Blg"

  



  
    
      
    
    
      brand()



        
          
        

    

  


  

      

          @spec brand() :: String.t()


      


Returns a Beer brand string
Examples
iex> Faker.Beer.brand()
"Paulaner"
iex> Faker.Beer.brand()
"Pabst Blue Ribbon"
iex> Faker.Beer.brand()
"Kirin Inchiban"
iex> Faker.Beer.brand()
"Birra Moretti"

  



  
    
      
    
    
      hop()



        
          
        

    

  


  

      

          @spec hop() :: String.t()


      


Returns a Hop name string
Examples
iex> Faker.Beer.hop()
"Eroica"
iex> Faker.Beer.hop()
"Bullion"
iex> Faker.Beer.hop()
"Mt. Rainier"
iex> Faker.Beer.hop()
"Citra"

  



  
    
      
    
    
      ibu()



        
          
        

    

  


  

      

          @spec ibu() :: String.t()


      


Returns an IBU(International Bitterness Unit) for a beer
Examples
iex> Faker.Beer.ibu()
"59 IBU"
iex> Faker.Beer.ibu()
"10 IBU"
iex> Faker.Beer.ibu()
"56 IBU"
iex> Faker.Beer.ibu()
"85 IBU"

  



  
    
      
    
    
      malt()



        
          
        

    

  


  

      

          @spec malt() :: String.t()


      


Returns a Malt name string
Examples
iex> Faker.Beer.malt()
"Carapils"
iex> Faker.Beer.malt()
"Pale"
iex> Faker.Beer.malt()
"Rye malt"
iex> Faker.Beer.malt()
"Munich"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a Beer name string
Examples
iex> Faker.Beer.name()
"Duvel"
iex> Faker.Beer.name()
"Founders Kentucky Breakfast"
iex> Faker.Beer.name()
"Yeti Imperial Stout"
iex> Faker.Beer.name()
"Stone Imperial Russian Stout"

  



  
    
      
    
    
      style()



        
          
        

    

  


  

      

          @spec style() :: String.t()


      


Returns a Style name string
Examples
iex> Faker.Beer.style()
"Stout"
iex> Faker.Beer.style()
"European Amber Lager"
iex> Faker.Beer.style()
"Strong Ale"
iex> Faker.Beer.style()
"German Wheat And Rye Beer"

  



  
    
      
    
    
      yeast()



        
          
        

    

  


  

      

          @spec yeast() :: String.t()


      


Returns a Yeast name string
Examples
iex> Faker.Beer.yeast()
"2206 - Bavarian Lager"
iex> Faker.Beer.yeast()
"3763 - Roeselare Ale Blend"
iex> Faker.Beer.yeast()
"3711 - French Saison"
iex> Faker.Beer.yeast()
"3944 - Belgian Witbier"

  


        

      


  

    
Faker.Beer.En 
    



      
Functions for generating Beer related data in English

      


      
        Summary


  
    Functions
  


    
      
        brand()

      


        Returns a Beer brand string



    


    
      
        hop()

      


        Returns a hop name string



    


    
      
        malt()

      


        Returns a malt name string



    


    
      
        name()

      


        Returns a Beer name string



    


    
      
        style()

      


        Returns a style name string



    


    
      
        yeast()

      


        Returns a yeast name string



    





      


      
        Functions


        


  
    
      
    
    
      brand()



        
          
        

    

  


  

      

          @spec brand() :: String.t()


      


Returns a Beer brand string
Examples
iex> Faker.Beer.En.brand()
"Paulaner"
iex> Faker.Beer.En.brand()
"Pabst Blue Ribbon"
iex> Faker.Beer.En.brand()
"Kirin Inchiban"
iex> Faker.Beer.En.brand()
"Birra Moretti"

  



  
    
      
    
    
      hop()



        
          
        

    

  


  

      

          @spec hop() :: String.t()


      


Returns a hop name string
Examples
iex> Faker.Beer.En.hop()
"Eroica"
iex> Faker.Beer.En.hop()
"Bullion"
iex> Faker.Beer.En.hop()
"Mt. Rainier"
iex> Faker.Beer.En.hop()
"Citra"

  



  
    
      
    
    
      malt()



        
          
        

    

  


  

      

          @spec malt() :: String.t()


      


Returns a malt name string
Examples
iex> Faker.Beer.En.malt()
"Carapils"
iex> Faker.Beer.En.malt()
"Pale"
iex> Faker.Beer.En.malt()
"Rye malt"
iex> Faker.Beer.En.malt()
"Munich"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a Beer name string
Examples
iex> Faker.Beer.En.name()
"Duvel"
iex> Faker.Beer.En.name()
"Founders Kentucky Breakfast"
iex> Faker.Beer.En.name()
"Yeti Imperial Stout"
iex> Faker.Beer.En.name()
"Stone Imperial Russian Stout"

  



  
    
      
    
    
      style()



        
          
        

    

  


  

      

          @spec style() :: String.t()


      


Returns a style name string
Examples
iex> Faker.Beer.En.style()
"Stout"
iex> Faker.Beer.En.style()
"European Amber Lager"
iex> Faker.Beer.En.style()
"Strong Ale"
iex> Faker.Beer.En.style()
"German Wheat And Rye Beer"

  



  
    
      
    
    
      yeast()



        
          
        

    

  


  

      

          @spec yeast() :: String.t()


      


Returns a yeast name string
Examples
iex> Faker.Beer.En.yeast()
"2206 - Bavarian Lager"
iex> Faker.Beer.En.yeast()
"3763 - Roeselare Ale Blend"
iex> Faker.Beer.En.yeast()
"3711 - French Saison"
iex> Faker.Beer.En.yeast()
"3944 - Belgian Witbier"

  


        

      


  

    
Faker.Blockchain.Bitcoin 
    



      
Functions for generate random bitcoin addresses.

      


      
        Summary


  
    Functions
  


    
      
        address(format \\ :main)

      


        Return bitcoin address. If pass :testnet it'll generate testnet address.



    





      


      
        Functions


        


    

  
    
      
    
    
      address(format \\ :main)



        
          
        

    

  


  

      

          @spec address(atom()) :: binary()


      


Return bitcoin address. If pass :testnet it'll generate testnet address.
Examples
iex> Faker.Blockchain.Bitcoin.address()
"1Lb2DM8vNXubePBWV7xmRnqJp5YT3BatcQ"
iex> Faker.Blockchain.Bitcoin.address()
"1erV2PhPaR4ndbEvLWDD9KX8btdNJZXt5"
iex> Faker.Blockchain.Bitcoin.address(:main)
"1Pn5NbAbT5hZocVWKSBtmqygdVbeVoheWk"
iex> Faker.Blockchain.Bitcoin.address(:testnet)
"mj1Vh7G8JZxg8gBtcQic2opTxtKUCQBBc5"

  


        

      


  

    
Faker.Blockchain.Ethereum 
    



      
Functions for generate ethereum addresses.

      


      
        Summary


  
    Types
  


    
      
        address()

      


    


    
      
        signature()

      


    





  
    Functions
  


    
      
        address()

      


        Return ethereum address



    


    
      
        signature()

      


        Return ethereum signature



    





      


      
        Types


        


  
    
      
    
    
      address()



        
          
        

    

  


  

      

          @type address() :: <<_::336>>


      



  



  
    
      
    
    
      signature()



        
          
        

    

  


  

      

          @type signature() :: <<_::1056>>


      



  


        

      

      
        Functions


        


  
    
      
    
    
      address()



        
          
        

    

  


  

      

          @spec address() :: address()


      


Return ethereum address
Examples
iex> Faker.Blockchain.Ethereum.address()
"0xd6d98b88c866f496dbd4de7ba48d0f5229fa7bf9"
iex> Faker.Blockchain.Ethereum.address()
"0x0728b27267bc5b7c964f332dc9edd02cc9f381de"
iex> Faker.Blockchain.Ethereum.address()
"0xf9d922a146bf85508a5f03ff18750bf363f4aef1"
iex> Faker.Blockchain.Ethereum.address()
"0x264e3bcc9b5c2accb99a3a4993ad56b778dc26ed"

  



  
    
      
    
    
      signature()



        
          
        

    

  


  

      

          @spec signature() :: signature()


      


Return ethereum signature
Examples
iex> Faker.Blockchain.Ethereum.signature()
"0xd6d98b88c866f496dbd4de7ba48d0f5229fa7bf90728b27267bc5b7c964f332dc9edd02cc9f381def9d922a146bf85508a5f03ff18750bf363f4aef1264e3bcc9b"
iex> Faker.Blockchain.Ethereum.signature()
"0x5c2accb99a3a4993ad56b778dc26eddb7e0c2e49c4e638e62de32933bc3525bb4594a1a378dc29f741dd703efd94dd3b6d08feaa53a9a6fb9eea6655545932347c"
iex> Faker.Blockchain.Ethereum.signature()
"0x7457f665824d0e4c8465665584b69644419b5dddff8974b228ed08a17a077d116aea7f26a4bf4aa5fc4841e85670392a32a0980264dc44f82f311ea7289f6b38fd"
iex> Faker.Blockchain.Ethereum.signature()
"0x0bce6fe7988f0f95a5e752150f018979129ef5d015ecf11dab74c42d0a51b8f7beb51374870811d45ca30920d02a913832764bac562323b4aafae9943a12de8d42"

  


        

      


  

    
Faker.Cannabis 
    



      
Functions for generating Cannabis related data

      


      
        Summary


  
    Functions
  


    
      
        brand()

      


        Returns a Cannabis brand string



    


    
      
        buzzword()

      


        Returns a Cannabis buzzword string



    


    
      
        cannabinoid()

      


        Returns a Cannabis cannabinoid string



    


    
      
        cannabinoid_abbreviation()

      


        Returns a Cannabis cannabinoid abbreviation string



    


    
      
        category()

      


        Returns a Cannabis category string



    


    
      
        health_benefit()

      


        Returns a Cannabis health benefit string



    


    
      
        medical_use()

      


        Returns a Cannabis medical use string



    


    
      
        strain()

      


        Returns a Cannabis strain string



    


    
      
        terpene()

      


        Returns a Cannabis terpene string



    


    
      
        thc()

      


        Returns a thc percentage for a cannabis thc



    


    
      
        type()

      


        Returns a Cannabis type string



    





      


      
        Functions


        


  
    
      
    
    
      brand()



        
          
        

    

  


  

      

          @spec brand() :: String.t()


      


Returns a Cannabis brand string
Examples
iex> Faker.Cannabis.En.brand()
"Evolab"
iex> Faker.Cannabis.En.brand()
"CI Wholesale"
iex> Faker.Cannabis.En.brand()
"Muy"
iex> Faker.Cannabis.En.brand()
"Chong's Choice"

  



  
    
      
    
    
      buzzword()



        
          
        

    

  


  

      

          @spec buzzword() :: String.t()


      


Returns a Cannabis buzzword string
Examples
iex> Faker.Cannabis.buzzword()
"toke"
iex> Faker.Cannabis.buzzword()
"cbd"
iex> Faker.Cannabis.buzzword()
"stoned"
iex> Faker.Cannabis.buzzword()
"stoned"

  



  
    
      
    
    
      cannabinoid()



        
          
        

    

  


  

      

          @spec cannabinoid() :: String.t()


      


Returns a Cannabis cannabinoid string
Examples
iex> Faker.Cannabis.cannabinoid()
"Cannabinol"
iex> Faker.Cannabis.cannabinoid()
"Cannabigerolic Acid"
iex> Faker.Cannabis.cannabinoid()
"Cannabinolic Acid"
iex> Faker.Cannabis.cannabinoid()
"Cannabicyclol"

  



  
    
      
    
    
      cannabinoid_abbreviation()



        
          
        

    

  


  

      

          @spec cannabinoid_abbreviation() :: String.t()


      


Returns a Cannabis cannabinoid abbreviation string
Examples
iex> Faker.Cannabis.cannabinoid_abbreviation()
"THCa"
iex> Faker.Cannabis.cannabinoid_abbreviation()
"THCv"
iex> Faker.Cannabis.cannabinoid_abbreviation()
"CBC"
iex> Faker.Cannabis.cannabinoid_abbreviation()
"CBG"

  



  
    
      
    
    
      category()



        
          
        

    

  


  

      

          @spec category() :: String.t()


      


Returns a Cannabis category string
Examples
iex> Faker.Cannabis.category()
"flower"
iex> Faker.Cannabis.category()
"medical"
iex> Faker.Cannabis.category()
"seeds & clones"
iex> Faker.Cannabis.category()
"live resin"

  



  
    
      
    
    
      health_benefit()



        
          
        

    

  


  

      

          @spec health_benefit() :: String.t()


      


Returns a Cannabis health benefit string
Examples
iex> Faker.Cannabis.health_benefit()
"relieves pain"
iex> Faker.Cannabis.health_benefit()
"inhibits cell growth in tumors/cancer cells"
iex> Faker.Cannabis.health_benefit()
"inhibits cell growth in tumors/cancer cells"
iex> Faker.Cannabis.health_benefit()
"treats fungal infection"

  



  
    
      
    
    
      medical_use()



        
          
        

    

  


  

      

          @spec medical_use() :: String.t()


      


Returns a Cannabis medical use string
Examples
iex> Faker.Cannabis.medical_use()
"analgesic"
iex> Faker.Cannabis.medical_use()
"anti-cancer"
iex> Faker.Cannabis.medical_use()
"anti-cancer"
iex> Faker.Cannabis.medical_use()
"anti-fungal"

  



  
    
      
    
    
      strain()



        
          
        

    

  


  

      

          @spec strain() :: String.t()


      


Returns a Cannabis strain string
Examples
iex> Faker.Cannabis.strain()
"Critical Kush"
iex> Faker.Cannabis.strain()
"Blue Dream"
iex> Faker.Cannabis.strain()
"Mr. Nice Guy"
iex> Faker.Cannabis.strain()
"Gorilla Glue"

  



  
    
      
    
    
      terpene()



        
          
        

    

  


  

      

          @spec terpene() :: String.t()


      


Returns a Cannabis terpene string
Examples
iex> Faker.Cannabis.terpene()
"Camphor"
iex> Faker.Cannabis.terpene()
"Camphene"
iex> Faker.Cannabis.terpene()
"α Pinene"
iex> Faker.Cannabis.terpene()
"Sabinene"

  



  
    
      
    
    
      thc()



        
          
        

    

  


  

      

          @spec thc() :: String.t()


      


Returns a thc percentage for a cannabis thc
Examples
iex> Faker.Cannabis.thc()
"18.1%"
iex> Faker.Cannabis.thc()
"30.4%"
iex> Faker.Cannabis.thc()
"28.6%"
iex> Faker.Cannabis.thc()
"40.6%"

  



  
    
      
    
    
      type()



        
          
        

    

  


  

      

          @spec type() :: String.t()


      


Returns a Cannabis type string
Examples
iex> Faker.Cannabis.type()
"hybrid"
iex> Faker.Cannabis.type()
"sativa"
iex> Faker.Cannabis.type()
"hybrid"
iex> Faker.Cannabis.type()
"sativa"

  


        

      


  

    
Faker.Cannabis.En 
    



      
Functions for generating Cannabis related data in English

      


      
        Summary


  
    Functions
  


    
      
        brand()

      


        Returns a Cannabis brand string



    


    
      
        buzzword()

      


        Returns a Cannabis buzzword string



    


    
      
        cannabinoid()

      


        Returns a Cannabis cannabinoid string



    


    
      
        cannabinoid_abbreviation()

      


        Returns a Cannabis cannabinoid abbreviation string



    


    
      
        category()

      


        Returns a Cannabis category string



    


    
      
        health_benefit()

      


        Returns a Cannabis health benefit string



    


    
      
        medical_use()

      


        Returns a Cannabis medical use string



    


    
      
        strain()

      


        Returns a Cannabis strain string



    


    
      
        terpene()

      


        Returns a Cannabis terpene string



    


    
      
        type()

      


        Returns a Cannabis type string



    





      


      
        Functions


        


  
    
      
    
    
      brand()



        
          
        

    

  


  

      

          @spec brand() :: String.t()


      


Returns a Cannabis brand string
Examples
iex> Faker.Cannabis.En.brand()
"Evolab"
iex> Faker.Cannabis.En.brand()
"CI Wholesale"
iex> Faker.Cannabis.En.brand()
"Muy"
iex> Faker.Cannabis.En.brand()
"Chong's Choice"

  



  
    
      
    
    
      buzzword()



        
          
        

    

  


  

      

          @spec buzzword() :: String.t()


      


Returns a Cannabis buzzword string
Examples
iex> Faker.Cannabis.En.buzzword()
"toke"
iex> Faker.Cannabis.En.buzzword()
"cbd"
iex> Faker.Cannabis.En.buzzword()
"stoned"
iex> Faker.Cannabis.En.buzzword()
"stoned"

  



  
    
      
    
    
      cannabinoid()



        
          
        

    

  


  

      

          @spec cannabinoid() :: String.t()


      


Returns a Cannabis cannabinoid string
Examples
iex> Faker.Cannabis.En.cannabinoid()
"Cannabinol"
iex> Faker.Cannabis.En.cannabinoid()
"Cannabigerolic Acid"
iex> Faker.Cannabis.En.cannabinoid()
"Cannabinolic Acid"
iex> Faker.Cannabis.En.cannabinoid()
"Cannabicyclol"

  



  
    
      
    
    
      cannabinoid_abbreviation()



        
          
        

    

  


  

      

          @spec cannabinoid_abbreviation() :: String.t()


      


Returns a Cannabis cannabinoid abbreviation string
Examples
iex> Faker.Cannabis.En.cannabinoid_abbreviation()
"THCa"
iex> Faker.Cannabis.En.cannabinoid_abbreviation()
"THCv"
iex> Faker.Cannabis.En.cannabinoid_abbreviation()
"CBC"
iex> Faker.Cannabis.En.cannabinoid_abbreviation()
"CBG"

  



  
    
      
    
    
      category()



        
          
        

    

  


  

      

          @spec category() :: String.t()


      


Returns a Cannabis category string
Examples
iex> Faker.Cannabis.En.category()
"flower"
iex> Faker.Cannabis.En.category()
"medical"
iex> Faker.Cannabis.En.category()
"seeds & clones"
iex> Faker.Cannabis.En.category()
"live resin"

  



  
    
      
    
    
      health_benefit()



        
          
        

    

  


  

      

          @spec health_benefit() :: String.t()


      


Returns a Cannabis health benefit string
Examples
iex> Faker.Cannabis.En.health_benefit()
"relieves pain"
iex> Faker.Cannabis.En.health_benefit()
"inhibits cell growth in tumors/cancer cells"
iex> Faker.Cannabis.En.health_benefit()
"inhibits cell growth in tumors/cancer cells"
iex> Faker.Cannabis.En.health_benefit()
"treats fungal infection"

  



  
    
      
    
    
      medical_use()



        
          
        

    

  


  

      

          @spec medical_use() :: String.t()


      


Returns a Cannabis medical use string
Examples
iex> Faker.Cannabis.En.medical_use()
"analgesic"
iex> Faker.Cannabis.En.medical_use()
"anti-cancer"
iex> Faker.Cannabis.En.medical_use()
"anti-cancer"
iex> Faker.Cannabis.En.medical_use()
"anti-fungal"

  



  
    
      
    
    
      strain()



        
          
        

    

  


  

      

          @spec strain() :: String.t()


      


Returns a Cannabis strain string
Examples
iex> Faker.Cannabis.En.strain()
"Critical Kush"
iex> Faker.Cannabis.En.strain()
"Blue Dream"
iex> Faker.Cannabis.En.strain()
"Mr. Nice Guy"
iex> Faker.Cannabis.En.strain()
"Gorilla Glue"

  



  
    
      
    
    
      terpene()



        
          
        

    

  


  

      

          @spec terpene() :: String.t()


      


Returns a Cannabis terpene string
Examples
iex> Faker.Cannabis.En.terpene()
"Camphor"
iex> Faker.Cannabis.En.terpene()
"Camphene"
iex> Faker.Cannabis.En.terpene()
"α Pinene"
iex> Faker.Cannabis.En.terpene()
"Sabinene"

  



  
    
      
    
    
      type()



        
          
        

    

  


  

      

          @spec type() :: String.t()


      


Returns a Cannabis type string
Examples
iex> Faker.Cannabis.En.type()
"hybrid"
iex> Faker.Cannabis.En.type()
"sativa"
iex> Faker.Cannabis.En.type()
"hybrid"
iex> Faker.Cannabis.En.type()
"sativa"

  


        

      


  

    
Faker.Cat 
    



      
Functions for generating Cat names, breeds, and registries

      


      
        Summary


  
    Functions
  


    
      
        breed()

      


        Return a random Cat breed



    


    
      
        name()

      


        Return a random Cat name



    


    
      
        registry()

      


        Return a random Cat registry



    





      


      
        Functions


        


  
    
      
    
    
      breed()



        
          
        

    

  


  

      

          @spec breed() :: String.t()


      


Return a random Cat breed
Examples
iex> Faker.Cat.breed()
"Mekong Bobtail"
iex> Faker.Cat.breed()
"Suphalak"
iex> Faker.Cat.breed()
"Russian White, Black and Tabby"
iex> Faker.Cat.breed()
"Asian Semi-longhair"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Return a random Cat name
Examples
iex> Faker.Cat.name()
"Daisy"
iex> Faker.Cat.name()
"Lily"
iex> Faker.Cat.name()
"Felix"
iex> Faker.Cat.name()
"Max"

  



  
    
      
    
    
      registry()



        
          
        

    

  


  

      

          @spec registry() :: String.t()


      


Return a random Cat registry
Examples
iex> Faker.Cat.registry()
"Cat Aficionado Association"
iex> Faker.Cat.registry()
"Fédération Internationale Féline"
iex> Faker.Cat.registry()
"Fédération Internationale Féline"
iex> Faker.Cat.registry()
"Fédération Internationale Féline"

  


        

      


  

    
Faker.Cat.En 
    



      
Functions for Cat names, breeds and registries in English

      


      
        Summary


  
    Functions
  


    
      
        breed()

      


        Returns a Cat breed string



    


    
      
        name()

      


        Returns a Cat name string



    


    
      
        registry()

      


        Returns a cat registry string



    





      


      
        Functions


        


  
    
      
    
    
      breed()



        
          
        

    

  


  

      

          @spec breed() :: String.t()


      


Returns a Cat breed string
Examples
iex> Faker.Cat.En.breed()
"Mekong Bobtail"
iex> Faker.Cat.En.breed()
"Suphalak"
iex> Faker.Cat.En.breed()
"Russian White, Black and Tabby"
iex> Faker.Cat.En.breed()
"Asian Semi-longhair"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a Cat name string
Examples
iex> Faker.Cat.En.name()
"Daisy"
iex> Faker.Cat.En.name()
"Lily"
iex> Faker.Cat.En.name()
"Felix"
iex> Faker.Cat.En.name()
"Max"

  



  
    
      
    
    
      registry()



        
          
        

    

  


  

      

          @spec registry() :: String.t()


      


Returns a cat registry string
Examples
iex> Faker.Cat.En.registry()
"Cat Aficionado Association"
iex> Faker.Cat.En.registry()
"Fédération Internationale Féline"
iex> Faker.Cat.En.registry()
"Fédération Internationale Féline"
iex> Faker.Cat.En.registry()
"Fédération Internationale Féline"

  


        

      


  

    
Faker.Cat.PtBr 
    



      
Functions for Cat names and breeds in Brazilian Portuguese

      


      
        Summary


  
    Functions
  


    
      
        breed()

      


        Returns a Cat breed string



    


    
      
        female_name()

      


        Returns a Cat famele name string



    


    
      
        male_name()

      


        Returns a Cat male name string



    





      


      
        Functions


        


  
    
      
    
    
      breed()



        
          
        

    

  


  

      

          @spec breed() :: String.t()


      


Returns a Cat breed string
Examples
iex> Faker.Cat.PtBr.breed()
"Angorá Turco"
iex> Faker.Cat.PtBr.breed()
"Azul Russo"
iex> Faker.Cat.PtBr.breed()
"Pelo Curto Brasileiro"
iex> Faker.Cat.PtBr.breed()
"Pelo Curto Americano"

  



  
    
      
    
    
      female_name()



        
          
        

    

  


  

      

          @spec female_name() :: String.t()


      


Returns a Cat famele name string
Examples
iex> Faker.Cat.PtBr.female_name()
"Samy"
iex> Faker.Cat.PtBr.female_name()
"Linda"
iex> Faker.Cat.PtBr.female_name()
"Úrsula"
iex> Faker.Cat.PtBr.female_name()
"Florinda"

  



  
    
      
    
    
      male_name()



        
          
        

    

  


  

      

          @spec male_name() :: String.t()


      


Returns a Cat male name string
Examples
iex> Faker.Cat.PtBr.male_name()
"Soneca"
iex> Faker.Cat.PtBr.male_name()
"Loui"
iex> Faker.Cat.PtBr.male_name()
"Ton"
iex> Faker.Cat.PtBr.male_name()
"Dante"

  


        

      


  

    
Faker.Code 
    



      
Functions for generate common codes.

      


      
        Summary


  
    Functions
  


    
      
        iban()

      


        Returns a random IBAN starting with the given components. The given components are not validated
but are included in the checksum.



    


    
      
        iban(country_code_or_codes)

      


        See Faker.Code.Iban.iban/1.



    


    
      
        iban(country_code, prefix_components)

      


        See Faker.Code.Iban.iban/2.



    


    
      
        isbn10()

      


        Returns a random isbn10 code



    


    
      
        isbn13()

      


        Returns a random isbn13 code



    


    
      
        isbn()

      


        Returns a random isbn code



    


    
      
        issn()

      


        Returns a random issn code



    





      


      
        Functions


        


  
    
      
    
    
      iban()



        
          
        

    

  


  

Returns a random IBAN starting with the given components. The given components are not validated
but are included in the checksum.
Examples
iex> Faker.Code.iban("NL", ["ABNA"])
"NL16ABNA0154264610"
iex> Faker.Code.iban("MC", ["FOO", "BAR"])
"MC98FOOBAR83"
iex> Faker.Code.iban("SM", ["A"])
"SM86A2970523570AY38NWIVZ5XT"
iex> Faker.Code.iban("MC", ["FOO", "BAR"])
"MC40FOOBAR60"

  



  
    
      
    
    
      iban(country_code_or_codes)



        
          
        

    

  


  

See Faker.Code.Iban.iban/1.

  



  
    
      
    
    
      iban(country_code, prefix_components)



        
          
        

    

  


  

See Faker.Code.Iban.iban/2.

  



  
    
      
    
    
      isbn10()



        
          
        

    

  


  

Returns a random isbn10 code
Examples
iex> Faker.Code.isbn10
"015426461X"
iex> Faker.Code.isbn10
"0832970522"
iex> Faker.Code.isbn10
"3570203034"
iex> Faker.Code.isbn10
"2097337600"

  



  
    
      
    
    
      isbn13()



        
          
        

    

  


  

Returns a random isbn13 code
Examples
iex> Faker.Code.isbn13
"9781542646109"
iex> Faker.Code.isbn13
"9783297052358"
iex> Faker.Code.isbn13
"9790203032090"
iex> Faker.Code.isbn13
"9793376033741"

  



  
    
      
    
    
      isbn()



        
          
        

    

  


  

Returns a random isbn code
Examples
iex> Faker.Code.isbn
"015426461X"
iex> Faker.Code.isbn
"0832970522"
iex> Faker.Code.isbn
"3570203034"
iex> Faker.Code.isbn
"2097337600"

  



  
    
      
    
    
      issn()



        
          
        

    

  


  

Returns a random issn code
Examples
iex> Faker.Code.issn
"01542648"
iex> Faker.Code.issn
"61083291"
iex> Faker.Code.issn
"70523576"
iex> Faker.Code.issn
"02030322"

  


        

      


  

    
Faker.Code.Iban 
    



      
Functions for generating IBANs (International Bank Account Numbers).
The generated IBANs should pass validators that check the checksum, country code, format and
length of the IBAN.
When more precision is required, you can pass predefined components that will be included in the
generated IBAN. The components will not be validated, but are used when calculating the checksum.
Examples
iex> Faker.Code.Iban.iban
"GI88LRCE6SQ3CQJGP3UHAJD"
iex> Faker.Code.Iban.iban("NL")
"NL26VYOC3032097337"
iex> Faker.Code.Iban.iban(["NL", "BE"])
"NL74YRFX4598109960"
iex> Faker.Code.Iban.iban(["NL", "BE"])
"BE31198979502980"

      


      
        Summary


  
    Functions
  


    
      
        iban()

      


        Returns a random IBAN from a random country



    


    
      
        iban(country_code_or_codes)

      


        Returns a random IBAN for a specific country code, or a random country code from a given list of
country codes.



    


    
      
        iban(country_code, prefix_components)

      


        Returns a random IBAN starting with the given components. The given components are not validated
but are included in the checksum.



    





      


      
        Functions


        


  
    
      
    
    
      iban()



        
          
        

    

  


  

      

          @spec iban() :: binary()


      


Returns a random IBAN from a random country
Examples
iex> Faker.Code.Iban.iban
"GI88LRCE6SQ3CQJGP3UHAJD"
iex> Faker.Code.Iban.iban
"BR0302030320973376033745981CB"
iex> Faker.Code.Iban.iban
"BE98607198979502"
iex> Faker.Code.Iban.iban
"PT72807856869061130164499"

  



  
    
      
    
    
      iban(country_code_or_codes)



        
          
        

    

  


  

      

          @spec iban(binary() | [binary()]) :: binary()


      


Returns a random IBAN for a specific country code, or a random country code from a given list of
country codes.
Examples
iex> Faker.Code.Iban.iban("FR")
"FR650154264610QJGP3UHAJDJ02"
iex> Faker.Code.Iban.iban("BE")
"BE95030320973376"
iex> Faker.Code.Iban.iban(["NL", "BE"])
"NL31RFXY5981099607"
iex> Faker.Code.Iban.iban(["BE", "DE"])
"DE57989795029807856869"

  



  
    
      
    
    
      iban(country_code, prefix_components)



        
          
        

    

  


  

      

          @spec iban(atom() | binary() | [binary()], [binary()]) :: binary()


      


Returns a random IBAN starting with the given components. The given components are not validated
but are included in the checksum.
Examples
iex> Faker.Code.Iban.iban("NL", ["ABNA"])
"NL16ABNA0154264610"
iex> Faker.Code.Iban.iban("MC", ["FOO", "BAR"])
"MC98FOOBAR83"
iex> Faker.Code.Iban.iban("SM", ["A"])
"SM86A2970523570AY38NWIVZ5XT"
iex> Faker.Code.Iban.iban("MC", ["FOO", "BAR"])
"MC40FOOBAR60"

  


        

      


  

    
Faker.Color 
    



      
Functions for generating different color representations.

      


      
        Summary


  
    Functions
  


    
      
        fancy_name()

      


        Return a random fancy color name



    


    
      
        name()

      


        Return a random color name



    


    
      
        rgb_decimal()

      


        Return random RGB decimal value.



    


    
      
        rgb_hex()

      


        Return random RGB hex value.



    





      


      
        Functions


        


  
    
      
    
    
      fancy_name()



        
          
        

    

  


  

      

          @spec fancy_name() :: String.t()


      


Return a random fancy color name
Examples
iex> Faker.Color.fancy_name()
"Tawny"
iex> Faker.Color.fancy_name()
"Citrine"
iex> Faker.Color.fancy_name()
"Greige"
iex> Faker.Color.fancy_name()
"Cesious"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Return a random color name
Examples
iex> Faker.Color.name()
"Red"
iex> Faker.Color.name()
"Green"
iex> Faker.Color.name()
"Brown"
iex> Faker.Color.name()
"Pink"

  



  
    
      
    
    
      rgb_decimal()



        
          
        

    

  


  

      

          @spec rgb_decimal() :: {byte(), byte(), byte()}


      


Return random RGB decimal value.
Examples
iex> Faker.Color.rgb_decimal()
{214, 217, 139}
iex> Faker.Color.rgb_decimal()
{136, 200, 102}
iex> Faker.Color.rgb_decimal()
{244, 150, 219}
iex> Faker.Color.rgb_decimal()
{212, 222, 123}

  



  
    
      
    
    
      rgb_hex()



        
          
        

    

  


  

      

          @spec rgb_hex() :: binary()


      


Return random RGB hex value.
Examples
iex> Faker.Color.rgb_hex()
"D6D98B"
iex> Faker.Color.rgb_hex()
"88C866"
iex> Faker.Color.rgb_hex()
"F496DB"
iex> Faker.Color.rgb_hex()
"D4DE7B"

  


        

      


  

    
Faker.Color.De 
    



      
Functions for color data in German

      


      
        Summary


  
    Functions
  


    
      
        fancy_name()

      


        Returns a random english fancy color name



    


    
      
        name()

      


        Returns a random German color name



    





      


      
        Functions


        


  
    
      
    
    
      fancy_name()



        
          
        

    

  


  

      

          @spec fancy_name() :: String.t()


      


Returns a random english fancy color name
Examples
iex> Faker.Color.De.fancy_name()
"Flieder"
iex> Faker.Color.De.fancy_name()
"Feldgrau"
iex> Faker.Color.De.fancy_name()
"Gelbgrün"
iex> Faker.Color.De.fancy_name()
"Rotbraun"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random German color name
Examples
iex> Faker.Color.De.name()
"Rot"
iex> Faker.Color.De.name()
"Grün"
iex> Faker.Color.De.name()
"Braun"
iex> Faker.Color.De.name()
"Rosa"

  


        

      


  

    
Faker.Color.En 
    



      
Functions for color data in English

      


      
        Summary


  
    Functions
  


    
      
        fancy_name()

      


        Returns a random English fancy color name



    


    
      
        name()

      


        Returns a random English color name



    





      


      
        Functions


        


  
    
      
    
    
      fancy_name()



        
          
        

    

  


  

      

          @spec fancy_name() :: String.t()


      


Returns a random English fancy color name
Examples
iex> Faker.Color.En.fancy_name()
"Tawny"
iex> Faker.Color.En.fancy_name()
"Citrine"
iex> Faker.Color.En.fancy_name()
"Greige"
iex> Faker.Color.En.fancy_name()
"Cesious"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random English color name
Examples
iex> Faker.Color.En.name()
"Red"
iex> Faker.Color.En.name()
"Green"
iex> Faker.Color.En.name()
"Brown"
iex> Faker.Color.En.name()
"Pink"

  


        

      


  

    
Faker.Color.Es 
    



      
Functions for color data in Spanish

      


      
        Summary


  
    Functions
  


    
      
        name()

      


        Returns a random spanish color name



    





      


      
        Functions


        


  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random spanish color name
Examples
iex> Faker.Color.Es.name()
"Rojo"
iex> Faker.Color.Es.name()
"Verde"
iex> Faker.Color.Es.name()
"Marrón"
iex> Faker.Color.Es.name()
"Rosa"

  


        

      


  

    
Faker.Color.Fr 
    



      
Functions for color data in French

      


      
        Summary


  
    Functions
  


    
      
        name()

      


        Returns a random french color name



    





      


      
        Functions


        


  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random french color name
Examples
iex> Faker.Color.Fr.name()
"Rouge"
iex> Faker.Color.Fr.name()
"Vert"
iex> Faker.Color.Fr.name()
"Marron"
iex> Faker.Color.Fr.name()
"Rose"

  


        

      


  

    
Faker.Color.Hy 
    



      
Functions for generating color data in Armenian

      


      
        Summary


  
    Functions
  


    
      
        name()

      


        Returns a random color name.



    





      


      
        Functions


        


  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random color name.
Examples
iex> Faker.Color.Hy.name()
"մոխրագույն"
iex> Faker.Color.Hy.name()
"կանաչ"
iex> Faker.Color.Hy.name()
"երկնագույն"
iex> Faker.Color.Hy.name()
"մանուշակագույն"

  


        

      


  

    
Faker.Color.It 
    



      
Functions for color data in Italian

      


      
        Summary


  
    Functions
  


    
      
        name()

      


        Returns a random Italian color name



    





      


      
        Functions


        


  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random Italian color name
Examples
iex> Faker.Color.It.name()
"Rosso"
iex> Faker.Color.It.name()
"Verde"
iex> Faker.Color.It.name()
"Marrone"
iex> Faker.Color.It.name()
"Rosa"

  


        

      


  

    
Faker.Color.PtBr 
    



      
Functions for color data in Brazilian Portuguese

      


      
        Summary


  
    Functions
  


    
      
        name()

      


        Returns a random Brazilian Portuguese color name



    





      


      
        Functions


        


  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random Brazilian Portuguese color name
Examples
iex> Faker.Color.PtBr.name()
"Vermelho"
iex> Faker.Color.PtBr.name()
"Verde"
iex> Faker.Color.PtBr.name()
"Marrom"
iex> Faker.Color.PtBr.name()
"Rosa"

  


        

      


  

    
Faker.Commerce 
    



      
Functions for generating commerce related data

      


      
        Summary


  
    Functions
  


    
      
        color()

      


        Returns a random color



    


    
      
        department()

      


        Returns a random department



    


    
      
        price()

      


        Returns a random number that represents a price



    


    
      
        product_name()

      


        Returns a complete product name, based on product adjectives, product
materials, product names



    


    
      
        product_name_adjective()

      


        Returns a random adjective for a product



    


    
      
        product_name_material()

      


        Returns a random product material



    


    
      
        product_name_product()

      


        Returns a random product name



    





      


      
        Functions


        


  
    
      
    
    
      color()



        
          
        

    

  


  

      

          @spec color() :: String.t()


      


Returns a random color
Examples
iex> Faker.Commerce.color()
"red"
iex> Faker.Commerce.color()
"sky blue"
iex> Faker.Commerce.color()
"lavender"
iex> Faker.Commerce.color()
"grey"

  



  
    
      
    
    
      department()



        
          
        

    

  


  

      

          @spec department() :: String.t()


      


Returns a random department
Examples
iex> Faker.Commerce.department()
"Home, Garden & Tools"
iex> Faker.Commerce.department()
"Electronics & Computers"
iex> Faker.Commerce.department()
"Clothing, Shoes & Jewelery"
iex> Faker.Commerce.department()
"Toys, Kids & Baby"

  



  
    
      
    
    
      price()



        
          
        

    

  


  

      

          @spec price() :: float()


      


Returns a random number that represents a price
Examples
iex> Faker.Commerce.price()
1.11
iex> Faker.Commerce.price()
4.02
iex> Faker.Commerce.price()
8.36
iex> Faker.Commerce.price()
3.05

  



  
    
      
    
    
      product_name()



        
          
        

    

  


  

      

          @spec product_name() :: String.t()


      


Returns a complete product name, based on product adjectives, product
materials, product names
Examples
iex> Faker.Commerce.product_name()
"Ergonomic Steel Shirt"
iex> Faker.Commerce.product_name()
"Fantastic Car"
iex> Faker.Commerce.product_name()
"Granite Gloves"
iex> Faker.Commerce.product_name()
"Plastic Shoes"

  



  
    
      
    
    
      product_name_adjective()



        
          
        

    

  


  

      

          @spec product_name_adjective() :: String.t()


      


Returns a random adjective for a product
Examples
iex> Faker.Commerce.product_name_adjective()
"Small"
iex> Faker.Commerce.product_name_adjective()
"Ergonomic"
iex> Faker.Commerce.product_name_adjective()
"Incredible"
iex> Faker.Commerce.product_name_adjective()
"Gorgeous"

  



  
    
      
    
    
      product_name_material()



        
          
        

    

  


  

      

          @spec product_name_material() :: String.t()


      


Returns a random product material
Examples
iex> Faker.Commerce.product_name_material()
"Rubber"
iex> Faker.Commerce.product_name_material()
"Concrete"
iex> Faker.Commerce.product_name_material()
"Steel"
iex> Faker.Commerce.product_name_material()
"Granite"

  



  
    
      
    
    
      product_name_product()



        
          
        

    

  


  

      

          @spec product_name_product() :: String.t()


      


Returns a random product name
Examples
iex> Faker.Commerce.product_name_product()
"Gloves"
iex> Faker.Commerce.product_name_product()
"Computer"
iex> Faker.Commerce.product_name_product()
"Table"
iex> Faker.Commerce.product_name_product()
"Shirt"

  


        

      


  

    
Faker.Commerce.En 
    



      
Functions for generating commerce related data in English

      


      
        Summary


  
    Functions
  


    
      
        color()

      


        Returns a random color



    


    
      
        department()

      


        Returns a random department



    


    
      
        product_name()

      


        Returns a complete product name, based on product adjectives, product
materials, product names



    


    
      
        product_name_adjective()

      


        Returns a random adjective for a product



    


    
      
        product_name_material()

      


        Returns a random product material



    


    
      
        product_name_product()

      


        Returns a random product name



    





      


      
        Functions


        


  
    
      
    
    
      color()



        
          
        

    

  


  

      

          @spec color() :: String.t()


      


Returns a random color
Examples
iex> Faker.Commerce.En.color()
"red"
iex> Faker.Commerce.En.color()
"sky blue"
iex> Faker.Commerce.En.color()
"lavender"
iex> Faker.Commerce.En.color()
"grey"

  



  
    
      
    
    
      department()



        
          
        

    

  


  

      

          @spec department() :: String.t()


      


Returns a random department
Examples
iex> Faker.Commerce.En.department()
"Home, Garden & Tools"
iex> Faker.Commerce.En.department()
"Electronics & Computers"
iex> Faker.Commerce.En.department()
"Clothing, Shoes & Jewelery"
iex> Faker.Commerce.En.department()
"Toys, Kids & Baby"

  



  
    
      
    
    
      product_name()



        
          
        

    

  


  

      

          @spec product_name() :: String.t()


      


Returns a complete product name, based on product adjectives, product
materials, product names
Examples
iex> Faker.Commerce.En.product_name()
"Ergonomic Steel Shirt"
iex> Faker.Commerce.En.product_name()
"Fantastic Car"
iex> Faker.Commerce.En.product_name()
"Granite Gloves"
iex> Faker.Commerce.En.product_name()
"Plastic Shoes"

  



  
    
      
    
    
      product_name_adjective()



        
          
        

    

  


  

      

          @spec product_name_adjective() :: String.t()


      


Returns a random adjective for a product
Examples
iex> Faker.Commerce.En.product_name_adjective()
"Small"
iex> Faker.Commerce.En.product_name_adjective()
"Ergonomic"
iex> Faker.Commerce.En.product_name_adjective()
"Incredible"
iex> Faker.Commerce.En.product_name_adjective()
"Gorgeous"

  



  
    
      
    
    
      product_name_material()



        
          
        

    

  


  

      

          @spec product_name_material() :: String.t()


      


Returns a random product material
Examples
iex> Faker.Commerce.En.product_name_material()
"Rubber"
iex> Faker.Commerce.En.product_name_material()
"Concrete"
iex> Faker.Commerce.En.product_name_material()
"Steel"
iex> Faker.Commerce.En.product_name_material()
"Granite"

  



  
    
      
    
    
      product_name_product()



        
          
        

    

  


  

      

          @spec product_name_product() :: String.t()


      


Returns a random product name
Examples
iex> Faker.Commerce.En.product_name_product()
"Gloves"
iex> Faker.Commerce.En.product_name_product()
"Computer"
iex> Faker.Commerce.En.product_name_product()
"Table"
iex> Faker.Commerce.En.product_name_product()
"Shirt"

  


        

      


  

    
Faker.Commerce.Hy 
    



      
Fuctions for generating commerce related data in Armenian

      


      
        Summary


  
    Functions
  


    
      
        color()

      


        Returns a random color.



    


    
      
        department()

      


        Returns a random department.



    


    
      
        product_name()

      


        Returns a complete product name, based on product adjectives, product
materials and product names.



    


    
      
        product_name_adjective()

      


        Returns a random adjective for a product.



    


    
      
        product_name_material()

      


        Returns a random product material.



    


    
      
        product_name_product()

      


        Returns a random product name.



    





      


      
        Functions


        


  
    
      
    
    
      color()



        
          
        

    

  


  

      

          @spec color() :: String.t()


      


Returns a random color.
Examples
iex> Faker.Commerce.Hy.color()
"մոխրագույն"
iex> Faker.Commerce.Hy.color()
"կանաչ"
iex> Faker.Commerce.Hy.color()
"երկնագույն"
iex> Faker.Commerce.Hy.color()
"մանուշակագույն"

  



  
    
      
    
    
      department()



        
          
        

    

  


  

      

          @spec department() :: String.t()


      


Returns a random department.
Examples
iex> Faker.Commerce.Hy.department()
"Համակարգիչներ"
iex> Faker.Commerce.Hy.department()
"Երաժշտություն"
iex> Faker.Commerce.Hy.department()
"Գրքեր"
iex> Faker.Commerce.Hy.department()
"Էլեկտրոնիկա"

  



  
    
      
    
    
      product_name()



        
          
        

    

  


  

      

          @spec product_name() :: String.t()


      


Returns a complete product name, based on product adjectives, product
materials and product names.
Examples
iex> Faker.Commerce.Hy.product_name()
"հիանալի բրոնզե գլխարկ"
iex> Faker.Commerce.Hy.product_name()
"ֆանտաստիկ դանակ"
iex> Faker.Commerce.Hy.product_name()
"պլաստիկից աթոռ"
iex> Faker.Commerce.Hy.product_name()
"ալյումինե վերնաշապիկ"

  



  
    
      
    
    
      product_name_adjective()



        
          
        

    

  


  

      

          @spec product_name_adjective() :: String.t()


      


Returns a random adjective for a product.
Examples
iex> Faker.Commerce.Hy.product_name_adjective()
"ֆանտաստիկ"
iex> Faker.Commerce.Hy.product_name_adjective()
"հիանալի"
iex> Faker.Commerce.Hy.product_name_adjective()
"միջակ"
iex> Faker.Commerce.Hy.product_name_adjective()
"նրբագեղ"

  



  
    
      
    
    
      product_name_material()



        
          
        

    

  


  

      

          @spec product_name_material() :: String.t()


      


Returns a random product material.
Examples
iex> Faker.Commerce.Hy.product_name_material()
"փայտե"
iex> Faker.Commerce.Hy.product_name_material()
"գրանիտե"
iex> Faker.Commerce.Hy.product_name_material()
"բրոնզե"
iex> Faker.Commerce.Hy.product_name_material()
"մարմարե"

  



  
    
      
    
    
      product_name_product()



        
          
        

    

  


  

      

          @spec product_name_product() :: String.t()


      


Returns a random product name.
Examples
iex> Faker.Commerce.Hy.product_name_product()
"վերնաշապիկ"
iex> Faker.Commerce.Hy.product_name_product()
"ստեղնաշար"
iex> Faker.Commerce.Hy.product_name_product()
"վերնաշապիկ"
iex> Faker.Commerce.Hy.product_name_product()
"գլխարկ"

  


        

      


  

    
Faker.Commerce.PtBr 
    



      
Functions for generating commerce related data in Brazilian Portuguese.

      


      
        Summary


  
    Functions
  


    
      
        color()

      


        Returns a random color.



    


    
      
        department()

      


        Returns a random department



    


    
      
        product_name()

      


        Returns a complete product name, based on product adjectives, product
materials, product names



    


    
      
        product_name_adjective()

      


        Returns a random adjective for a product



    


    
      
        product_name_material()

      


        Returns a random product material



    


    
      
        product_name_product()

      


        Returns a random product name



    





      


      
        Functions


        


  
    
      
    
    
      color()



        
          
        

    

  


  

      

          @spec color() :: String.t()


      


Returns a random color.
Examples
iex> Faker.Commerce.PtBr.color()
"Vermelho(a)"
iex> Faker.Commerce.PtBr.color()
"Verde"
iex> Faker.Commerce.PtBr.color()
"Marrom"
iex> Faker.Commerce.PtBr.color()
"Rosa"

  



  
    
      
    
    
      department()



        
          
        

    

  


  

      

          @spec department() :: String.t()


      


Returns a random department
Examples
iex> Faker.Commerce.PtBr.department()
"Eletrônicos, TV e Áudio"
iex> Faker.Commerce.PtBr.department()
"Alimentos e bebidas"
iex> Faker.Commerce.PtBr.department()
"Livros"
iex> Faker.Commerce.PtBr.department()
"Beleza e cuidados pessoais"

  



  
    
      
    
    
      product_name()



        
          
        

    

  


  

      

          @spec product_name() :: String.t()


      


Returns a complete product name, based on product adjectives, product
materials, product names
Examples
iex> Faker.Commerce.PtBr.product_name()
"Cadeira Gigante de Algodão"
iex> Faker.Commerce.PtBr.product_name()
"Computador de Granito"
iex> Faker.Commerce.PtBr.product_name()
"Bolsa Médio(a)"
iex> Faker.Commerce.PtBr.product_name()
"Escrivaninha Grande"

  



  
    
      
    
    
      product_name_adjective()



        
          
        

    

  


  

      

          @spec product_name_adjective() :: String.t()


      


Returns a random adjective for a product
Examples
iex> Faker.Commerce.PtBr.product_name_adjective()
"Gigante"
iex> Faker.Commerce.PtBr.product_name_adjective()
"Rústico(a)"
iex> Faker.Commerce.PtBr.product_name_adjective()
"Gigante"
iex> Faker.Commerce.PtBr.product_name_adjective()
"Elegante"

  



  
    
      
    
    
      product_name_material()



        
          
        

    

  


  

      

          @spec product_name_material() :: String.t()


      


Returns a random product material
Examples
iex> Faker.Commerce.PtBr.product_name_material()
"Plástico"
iex> Faker.Commerce.PtBr.product_name_material()
"Aço"
iex> Faker.Commerce.PtBr.product_name_material()
"Concreto"
iex> Faker.Commerce.PtBr.product_name_material()
"Algodão"

  



  
    
      
    
    
      product_name_product()



        
          
        

    

  


  

      

          @spec product_name_product() :: String.t()


      


Returns a random product name
Examples
iex> Faker.Commerce.PtBr.product_name_product()
"Guarda-roupa"
iex> Faker.Commerce.PtBr.product_name_product()
"Cadeira"
iex> Faker.Commerce.PtBr.product_name_product()
"Cobertor"
iex> Faker.Commerce.PtBr.product_name_product()
"Sandália"

  


        

      


  

    
Faker.Company 
    



      
Functions for generating company names and related stuff

      


      
        Summary


  
    Functions
  


    
      
        bs()

      


        Returns a random complete business related bullshit



    


    
      
        bullshit()

      


        Returns a random business related bullshit



    


    
      
        bullshit_prefix()

      


        Returns a random business related bullshit prefix



    


    
      
        bullshit_suffix()

      


        Returns a random business related bullshit suffix



    


    
      
        buzzword()

      


        Returns a random business related buzzword



    


    
      
        buzzword_prefix()

      


        Returns a random business related buzzword prefix



    


    
      
        buzzword_suffix()

      


        Returns a random business related buzzword suffix



    


    
      
        catch_phrase()

      


        Returns a random complete catch phrase



    


    
      
        name()

      


        Returns complete company name



    


    
      
        suffix()

      


        Returns a random type of business entity



    





      


      
        Functions


        


  
    
      
    
    
      bs()



        
          
        

    

  


  

      

          @spec bs() :: String.t()


      


Returns a random complete business related bullshit
Examples
iex> Faker.Company.bs()
"syndicate e-business e-business"
iex> Faker.Company.bs()
"scale global metrics"
iex> Faker.Company.bs()
"optimize scalable markets"
iex> Faker.Company.bs()
"implement out-of-the-box content"

  



  
    
      
    
    
      bullshit()



        
          
        

    

  


  

      

          @spec bullshit() :: String.t()


      


Returns a random business related bullshit
Examples
iex> Faker.Company.bullshit()
"web-enabled"
iex> Faker.Company.bullshit()
"e-business"
iex> Faker.Company.bullshit()
"web-enabled"
iex> Faker.Company.bullshit()
"next-generation"

  



  
    
      
    
    
      bullshit_prefix()



        
          
        

    

  


  

      

          @spec bullshit_prefix() :: String.t()


      


Returns a random business related bullshit prefix
Examples
iex> Faker.Company.bullshit_prefix()
"syndicate"
iex> Faker.Company.bullshit_prefix()
"visualize"
iex> Faker.Company.bullshit_prefix()
"incentivize"
iex> Faker.Company.bullshit_prefix()
"scale"

  



  
    
      
    
    
      bullshit_suffix()



        
          
        

    

  


  

      

          @spec bullshit_suffix() :: String.t()


      


Returns a random business related bullshit suffix
Examples
iex> Faker.Company.bullshit_suffix()
"e-services"
iex> Faker.Company.bullshit_suffix()
"niches"
iex> Faker.Company.bullshit_suffix()
"e-business"
iex> Faker.Company.bullshit_suffix()
"systems"

  



  
    
      
    
    
      buzzword()



        
          
        

    

  


  

      

          @spec buzzword() :: String.t()


      


Returns a random business related buzzword
Examples
iex> Faker.Company.buzzword()
"upward-trending"
iex> Faker.Company.buzzword()
"full-range"
iex> Faker.Company.buzzword()
"uniform"
iex> Faker.Company.buzzword()
"tertiary"

  



  
    
      
    
    
      buzzword_prefix()



        
          
        

    

  


  

      

          @spec buzzword_prefix() :: String.t()


      


Returns a random business related buzzword prefix
Examples
iex> Faker.Company.buzzword_prefix()
"Configurable"
iex> Faker.Company.buzzword_prefix()
"Advanced"
iex> Faker.Company.buzzword_prefix()
"Grass-roots"
iex> Faker.Company.buzzword_prefix()
"Automated"

  



  
    
      
    
    
      buzzword_suffix()



        
          
        

    

  


  

      

          @spec buzzword_suffix() :: String.t()


      


Returns a random business related buzzword suffix
Examples
iex> Faker.Company.buzzword_suffix()
"encoding"
iex> Faker.Company.buzzword_suffix()
"standardization"
iex> Faker.Company.buzzword_suffix()
"Graphical User Interface"
iex> Faker.Company.buzzword_suffix()
"product"

  



  
    
      
    
    
      catch_phrase()



        
          
        

    

  


  

      

          @spec catch_phrase() :: String.t()


      


Returns a random complete catch phrase
Examples
iex> Faker.Company.catch_phrase()
"Configurable full-range Graphical User Interface"
iex> Faker.Company.buzzword_suffix()
"product"
iex> Faker.Company.buzzword_suffix()
"intranet"
iex> Faker.Company.buzzword_suffix()
"pricing structure"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns complete company name
Examples
iex> Faker.Company.name()
"Hayes Inc"
iex> Faker.Company.name()
"Sipes, Wehner and Hane"
iex> Faker.Company.name()
"Schiller, Rogahn and Hartmann"
iex> Faker.Company.name()
"Murphy-Metz"

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random type of business entity
Examples
iex> Faker.Company.suffix()
"Inc"
iex> Faker.Company.suffix()
"and Sons"
iex> Faker.Company.suffix()
"Inc"
iex> Faker.Company.suffix()
"Ltd"

  


        

      


  

    
Faker.Company.En 
    



      
Functions for company data in English

      


      
        Summary


  
    Functions
  


    
      
        bs()

      


        Returns a random complete English business related bullshit



    


    
      
        bullshit()

      


        Returns a random English business related bullshit



    


    
      
        bullshit_prefix()

      


        Returns a random English business related bullshit prefix



    


    
      
        bullshit_suffix()

      


        Returns a random English business related bullshit suffix



    


    
      
        buzzword()

      


        Returns a random English business related buzzword



    


    
      
        buzzword_prefix()

      


        Returns a random English business related buzzword prefix



    


    
      
        buzzword_suffix()

      


        Returns a random English business related buzzword suffix



    


    
      
        catch_phrase()

      


        Returns a random complete English catch phrase



    


    
      
        name()

      


        Returns complete English company name



    


    
      
        suffix()

      


        Returns a random type of business entity



    





      


      
        Functions


        


  
    
      
    
    
      bs()



        
          
        

    

  


  

      

          @spec bs() :: String.t()


      


Returns a random complete English business related bullshit
Examples
iex> Faker.Company.En.bs()
"syndicate e-business e-business"
iex> Faker.Company.En.bs()
"scale global metrics"
iex> Faker.Company.En.bs()
"optimize scalable markets"
iex> Faker.Company.En.bs()
"implement out-of-the-box content"

  



  
    
      
    
    
      bullshit()



        
          
        

    

  


  

      

          @spec bullshit() :: String.t()


      


Returns a random English business related bullshit
Examples
iex> Faker.Company.En.bullshit()
"web-enabled"
iex> Faker.Company.En.bullshit()
"e-business"
iex> Faker.Company.En.bullshit()
"web-enabled"
iex> Faker.Company.En.bullshit()
"next-generation"

  



  
    
      
    
    
      bullshit_prefix()



        
          
        

    

  


  

      

          @spec bullshit_prefix() :: String.t()


      


Returns a random English business related bullshit prefix
Examples
iex> Faker.Company.En.bullshit_prefix()
"syndicate"
iex> Faker.Company.En.bullshit_prefix()
"visualize"
iex> Faker.Company.En.bullshit_prefix()
"incentivize"
iex> Faker.Company.En.bullshit_prefix()
"scale"

  



  
    
      
    
    
      bullshit_suffix()



        
          
        

    

  


  

      

          @spec bullshit_suffix() :: String.t()


      


Returns a random English business related bullshit suffix
Examples
iex> Faker.Company.En.bullshit_suffix()
"e-services"
iex> Faker.Company.En.bullshit_suffix()
"niches"
iex> Faker.Company.En.bullshit_suffix()
"e-business"
iex> Faker.Company.En.bullshit_suffix()
"systems"

  



  
    
      
    
    
      buzzword()



        
          
        

    

  


  

      

          @spec buzzword() :: String.t()


      


Returns a random English business related buzzword
Examples
iex> Faker.Company.En.buzzword()
"upward-trending"
iex> Faker.Company.En.buzzword()
"full-range"
iex> Faker.Company.En.buzzword()
"uniform"
iex> Faker.Company.En.buzzword()
"tertiary"

  



  
    
      
    
    
      buzzword_prefix()



        
          
        

    

  


  

      

          @spec buzzword_prefix() :: String.t()


      


Returns a random English business related buzzword prefix
Examples
iex> Faker.Company.En.buzzword_prefix()
"Configurable"
iex> Faker.Company.En.buzzword_prefix()
"Advanced"
iex> Faker.Company.En.buzzword_prefix()
"Grass-roots"
iex> Faker.Company.En.buzzword_prefix()
"Automated"

  



  
    
      
    
    
      buzzword_suffix()



        
          
        

    

  


  

      

          @spec buzzword_suffix() :: String.t()


      


Returns a random English business related buzzword suffix
Examples
iex> Faker.Company.En.buzzword_suffix()
"encoding"
iex> Faker.Company.En.buzzword_suffix()
"standardization"
iex> Faker.Company.En.buzzword_suffix()
"Graphical User Interface"
iex> Faker.Company.En.buzzword_suffix()
"product"

  



  
    
      
    
    
      catch_phrase()



        
          
        

    

  


  

      

          @spec catch_phrase() :: String.t()


      


Returns a random complete English catch phrase
Examples
iex> Faker.Company.En.catch_phrase()
"Configurable full-range Graphical User Interface"
iex> Faker.Company.En.catch_phrase()
"Automated mission-critical pricing structure"
iex> Faker.Company.En.catch_phrase()
"Profit-focused bottom-line algorithm"
iex> Faker.Company.En.catch_phrase()
"Self-enabling systematic initiative"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns complete English company name
Examples
iex> Faker.Company.En.name()
"Hayes Inc"
iex> Faker.Company.En.name()
"Sipes, Wehner and Hane"
iex> Faker.Company.En.name()
"Schiller, Rogahn and Hartmann"
iex> Faker.Company.En.name()
"Murphy-Metz"

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random type of business entity
Examples
iex> Faker.Company.En.suffix()
"Inc"
iex> Faker.Company.En.suffix()
"and Sons"
iex> Faker.Company.En.suffix()
"Inc"
iex> Faker.Company.En.suffix()
"Ltd"

  


        

      


  

    
Faker.Company.Hy 
    



      
Functions for generating company related data in Armenian

      


      
        Summary


  
    Functions
  


    
      
        bs()

      


        Returns a random complete business related bullshit.



    


    
      
        bullshit()

      


        Returns a random business related bullshit.



    


    
      
        bullshit_prefix()

      


        Returns a random business related bullshit prefix.



    


    
      
        bullshit_suffix()

      


        Returns a random business related bullshit suffix.



    


    
      
        buzzword()

      


        Returns a random business related buzzword.



    


    
      
        buzzword_prefix()

      


        Returns a random business related buzzword prefix.



    


    
      
        buzzword_suffix()

      


        Returns a random business related buzzword suffix.



    


    
      
        catch_phrase()

      


        Returns a random complete catch phrase.



    


    
      
        name()

      


        Returns complete company name.



    


    
      
        suffix()

      


        Returns a random type of business entity.



    





      


      
        Functions


        


  
    
      
    
    
      bs()



        
          
        

    

  


  

      

          @spec bs() :: String.t()


      


Returns a random complete business related bullshit.
Examples
iex> Faker.Company.Hy.bs()
"առավելագույնի հասցնել նորարարական հարաբերություններ"
iex> Faker.Company.Hy.bs()
"ակտիվացնել վիրտուալ օգտագործողներ"
iex> Faker.Company.Hy.bs()
"առաքել գլոբալ կառուցվածքներ"
iex> Faker.Company.Hy.bs()
"առաքել հարուստ փորձառություններ"

  



  
    
      
    
    
      bullshit()



        
          
        

    

  


  

      

          @spec bullshit() :: String.t()


      


Returns a random business related bullshit.
Examples
iex> Faker.Company.Hy.bullshit()
"ազդեցիկ"
iex> Faker.Company.Hy.bullshit()
"նորարարական"
iex> Faker.Company.Hy.bullshit()
"ժամանակակից"
iex> Faker.Company.Hy.bullshit()
"ժամանակակից"

  



  
    
      
    
    
      bullshit_prefix()



        
          
        

    

  


  

      

          @spec bullshit_prefix() :: String.t()


      


Returns a random business related bullshit prefix.
Examples
iex> Faker.Company.Hy.bullshit_prefix()
"առավելագույնի հասցնել"
iex> Faker.Company.Hy.bullshit_prefix()
"պատկերացնել"
iex> Faker.Company.Hy.bullshit_prefix()
"ընդլայնել"
iex> Faker.Company.Hy.bullshit_prefix()
"ակտիվացնել"

  



  
    
      
    
    
      bullshit_suffix()



        
          
        

    

  


  

      

          @spec bullshit_suffix() :: String.t()


      


Returns a random business related bullshit suffix.
Examples
iex> Faker.Company.Hy.bullshit_suffix()
"հարաբերություններ"
iex> Faker.Company.Hy.bullshit_suffix()
"շուկաներ"
iex> Faker.Company.Hy.bullshit_suffix()
"հարաբերություններ"
iex> Faker.Company.Hy.bullshit_suffix()
"նախաձեռնություններ"

  



  
    
      
    
    
      buzzword()



        
          
        

    

  


  

      

          @spec buzzword() :: String.t()


      


Returns a random business related buzzword.
Examples
iex> Faker.Company.Hy.buzzword()
"ուղղորդիչ"
iex> Faker.Company.Hy.buzzword()
"լոգիստիկ"
iex> Faker.Company.Hy.buzzword()
"երրորդական"
iex> Faker.Company.Hy.buzzword()
"բացահայտ"

  



  
    
      
    
    
      buzzword_prefix()



        
          
        

    

  


  

      

          @spec buzzword_prefix() :: String.t()


      


Returns a random business related buzzword prefix.
Examples
iex> Faker.Company.Hy.buzzword_prefix()
"Բազմուղի"
iex> Faker.Company.Hy.buzzword_prefix()
"Կարգավորելի"
iex> Faker.Company.Hy.buzzword_prefix()
"Փոխարկելի"
iex> Faker.Company.Hy.buzzword_prefix()
"Ծրագրավորելի"

  



  
    
      
    
    
      buzzword_suffix()



        
          
        

    

  


  

      

          @spec buzzword_suffix() :: String.t()


      


Returns a random business related buzzword suffix.
Examples
iex> Faker.Company.Hy.buzzword_suffix()
"ինտերֆեյս"
iex> Faker.Company.Hy.buzzword_suffix()
"համախմբվածություն"
iex> Faker.Company.Hy.buzzword_suffix()
"տեղական ցանց"
iex> Faker.Company.Hy.buzzword_suffix()
"գնային կառուցվածք"

  



  
    
      
    
    
      catch_phrase()



        
          
        

    

  


  

      

          @spec catch_phrase() :: String.t()


      


Returns a random complete catch phrase.
Examples
iex> Faker.Company.Hy.catch_phrase()
"Բազմուղի լոգիստիկ տեղական ցանց"
iex> Faker.Company.Hy.catch_phrase()
"Ծրագրավորելի 3-րդ սերնդի արտադրողականություն"
iex> Faker.Company.Hy.catch_phrase()
"Հեշտացված ուղղորդիչ ալգորիթմ"
iex> Faker.Company.Hy.catch_phrase()
"Դիմացկուն չեզոք տվյալների պահեստ"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns complete company name.
Examples
iex> Faker.Company.Hy.name()
"Մարալիկ ԲԲԸ"
iex> Faker.Company.Hy.name()
"Վանյան, Կարագյան և Ամիրբեկյան ՓԲԸ"
iex> Faker.Company.Hy.name()
"Հովիվյան ՓԲԸ"
iex> Faker.Company.Hy.name()
"Միլենա և Աշոտ ԲԲԸ"

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random type of business entity.
Examples
iex> Faker.Company.Hy.suffix()
"ՍՊԸ"
iex> Faker.Company.Hy.suffix()
"Հոլդինգ"
iex> Faker.Company.Hy.suffix()
"ԲԲԸ"
iex> Faker.Company.Hy.suffix()
"ՓԲԸ"

  


        

      


  

    
Faker.Currency 
    



      
Functions for generating currency related data

      


      
        Summary


  
    Functions
  


    
      
        code()

      


        Returns a random currency code



    


    
      
        symbol()

      


        Returns a random currency symbol



    





      


      
        Functions


        


  
    
      
    
    
      code()



        
          
        

    

  


  

      

          @spec code() :: String.t()


      


Returns a random currency code
Examples
iex> Faker.Currency.code()
"WST"
iex> Faker.Currency.code()
"UYU"
iex> Faker.Currency.code()
"CRC"
iex> Faker.Currency.code()
"DOP"

  



  
    
      
    
    
      symbol()



        
          
        

    

  


  

      

          @spec symbol() :: String.t()


      


Returns a random currency symbol
Examples
iex> Faker.Currency.symbol()
"£"
iex> Faker.Currency.symbol()
"฿"
iex> Faker.Currency.symbol()
"ƒ"
iex> Faker.Currency.symbol()
"Rp"

  


        

      


  

    
Faker.Date 
    



      
Functions for generating dates

      


      
        Summary


  
    Functions
  


    
      
        backward(days)

      


        Returns a random date in the past up to N days, today not included



    


    
      
        between(from, to)

      


        Returns a random date between two dates



    


    
      
        date_of_birth(age_or_range \\ 18..99)

      


        Returns a random date of birth for a person with an age specified by a number or range



    


    
      
        forward(days)

      


        Returns a random date in the future up to N days, today not included



    





      


      
        Functions


        


  
    
      
    
    
      backward(days)



        
          
        

    

  


  

      

          @spec backward(integer()) :: Date.t()


      


Returns a random date in the past up to N days, today not included

  



  
    
      
    
    
      between(from, to)



        
          
        

    

  


  

      

          @spec between(Date.t(), Date.t()) :: Date.t()


      


Returns a random date between two dates
Examples
iex> Faker.Date.between(~D[2010-12-10], ~D[2016-12-25])
~D[2013-06-07]
iex> Faker.Date.between(~D[2000-12-20], ~D[2000-12-25])
~D[2000-12-20]
iex> Faker.Date.between(~D[2000-02-02], ~D[2016-02-05])
~D[2014-10-23]
iex> Faker.Date.between(~D[2010-12-20], ~D[2010-12-25])
~D[2010-12-21]

  



    

  
    
      
    
    
      date_of_birth(age_or_range \\ 18..99)



        
          
        

    

  


  

      

          @spec date_of_birth(integer() | Range.t()) :: Date.t()


      


Returns a random date of birth for a person with an age specified by a number or range

  



  
    
      
    
    
      forward(days)



        
          
        

    

  


  

      

          @spec forward(integer()) :: Date.t()


      


Returns a random date in the future up to N days, today not included

  


        

      


  

    
Faker.DateTime 
    



      
Functions for working with DateTime values.

      


      
        Summary


  
    Functions
  


    
      
        backward(days)

      


        Returns a random date in the past up to N days, today not included



    


    
      
        between(from, to)

      


        Returns a random DateTime between two dates



    


    
      
        forward(days)

      


        Returns a random date in the future up to N days, today not included



    





      


      
        Functions


        


  
    
      
    
    
      backward(days)



        
          
        

    

  


  

      

          @spec backward(integer()) :: DateTime.t()


      


Returns a random date in the past up to N days, today not included
Examples
iex> Faker.DateTime.backward(4)
#=> %DateTime{calendar: Calendar.ISO, day: 20, hour: 6,
#=>  microsecond: {922180, 6},  minute: 2, month: 12, second: 17,
#=>  std_offset: 0, time_zone: "Etc/UTC", utc_offset: 0, year: 2016,
#=>  zone_abbr: "UTC"}

  



  
    
      
    
    
      between(from, to)



        
          
        

    

  


  

      

          @spec between(
  Date.t() | NaiveDateTime.t() | DateTime.t(),
  Date.t() | NaiveDateTime.t() | DateTime.t()
) :: DateTime.t()


      


Returns a random DateTime between two dates
Examples
iex> Faker.DateTime.between(~N[2016-12-20 00:00:00], ~N[2016-12-25 00:00:00])
#=> %DateTime{calendar: Calendar.ISO, day: 22, hour: 7,
#=>  microsecond: {753572, 6},  minute: 56, month: 12, second: 26,
#=>  std_offset: 0, time_zone: "Etc/UTC", utc_offset: 0, year: 2016,
#=>  zone_abbr: "UTC"}

  



  
    
      
    
    
      forward(days)



        
          
        

    

  


  

      

          @spec forward(integer()) :: DateTime.t()


      


Returns a random date in the future up to N days, today not included
Examples
iex> Faker.DateTime.forward(4)
#=> %DateTime{calendar: Calendar.ISO, day: 25, hour: 6,
#=>  microsecond: {922180, 6},  minute: 2, month: 12, second: 17,
#=>  std_offset: 0, time_zone: "Etc/UTC", utc_offset: 0, year: 2016,
#=>  zone_abbr: "UTC"}

  


        

      


  

    
Faker.Dog.PtBr 
    



      
Functions for Dog names, breeds and characteristics in Portuguese

      


      
        Summary


  
    Functions
  


    
      
        breed()

      


        Returns a dog breed.



    


    
      
        characteristic()

      


        Returns a characteristic of a dog.



    


    
      
        name()

      


        Returns a dog name.



    





      


      
        Functions


        


  
    
      
    
    
      breed()



        
          
        

    

  


  

      

          @spec breed() :: String.t()


      


Returns a dog breed.
Examples
iex> Faker.Dog.PtBr.breed()
"Boxer"
iex> Faker.Dog.PtBr.breed()
"Schnauzer"
iex> Faker.Dog.PtBr.breed()
"Lhasa apso"
iex> Faker.Dog.PtBr.breed()
"Fila brasileiro"

  



  
    
      
    
    
      characteristic()



        
          
        

    

  


  

      

          @spec characteristic() :: String.t()


      


Returns a characteristic of a dog.
Examples
iex> Faker.Dog.PtBr.characteristic()
"Atlético, protetor e amável"
iex> Faker.Dog.PtBr.characteristic()
"Independente, reservado e inteligente"
iex> Faker.Dog.PtBr.characteristic()
"Amigável, trabalhador e extrovertido"
iex> Faker.Dog.PtBr.characteristic()
"Calmo, leal e orgulhoso"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a dog name.
Examples
iex> Faker.Dog.PtBr.name()
"Simba"
iex> Faker.Dog.PtBr.name()
"Max"
iex> Faker.Dog.PtBr.name()
"Malu"
iex> Faker.Dog.PtBr.name()
"Mike"

  


        

      


  

    
Faker.File 
    



      
Functions for generating file related data

      


      
        Summary


  
    Functions
  


    
      
        file_extension()

      


        Returns a random file extension



    


    
      
        file_extension(category)

      


        Returns a random file extension from the category given
Available categories: :audio, :image, :text, :video, :office



    


    
      
        file_name()

      


        Returns a random file name



    


    
      
        file_name(category)

      


        Returns a random file name from the category given
Available categories: :audio, :image, :text, :video, :office



    


    
      
        mime_type()

      


        Returns a random mime type



    


    
      
        mime_type(category)

      


        Returns a random mime type from the category given
Available categories: :application, :audio, :image, :message, :model,
:multipart, :text, :video



    





      


      
        Functions


        


  
    
      
    
    
      file_extension()



        
          
        

    

  


  

      

          @spec file_extension() :: String.t()


      


Returns a random file extension
Examples
iex> Faker.File.file_extension()
"wav"
iex> Faker.File.file_extension()
"wav"
iex> Faker.File.file_extension()
"doc"
iex> Faker.File.file_extension()
"mov"

  



  
    
      
    
    
      file_extension(category)



        
          
        

    

  


  

      

          @spec file_extension(atom()) :: String.t()


      


Returns a random file extension from the category given
Available categories: :audio, :image, :text, :video, :office
Examples
iex> Faker.File.file_extension(:video)
"mov"
iex> Faker.File.file_extension(:image)
"tiff"
iex> Faker.File.file_extension(:audio)
"flac"
iex> Faker.File.file_extension(:office)
"xls"

  



  
    
      
    
    
      file_name()



        
          
        

    

  


  

      

          @spec file_name() :: String.t()


      


Returns a random file name
Examples
iex> Faker.File.file_name()
"aliquam.jpg"
iex> Faker.File.file_name()
"deleniti.doc"
iex> Faker.File.file_name()
"qui.jpg"
iex> Faker.File.file_name()
"quibusdam.csv"

  



  
    
      
    
    
      file_name(category)



        
          
        

    

  


  

      

          @spec file_name(atom()) :: String.t()


      


Returns a random file name from the category given
Available categories: :audio, :image, :text, :video, :office
Examples
iex> Faker.File.file_name(:text)
"aliquam.txt"
iex> Faker.File.file_name(:video)
"sint.mp4"
iex> Faker.File.file_name(:image)
"consequatur.bmp"
iex> Faker.File.file_name(:audio)
"qui.wav"

  



  
    
      
    
    
      mime_type()



        
          
        

    

  


  

      

          @spec mime_type() :: String.t()


      


Returns a random mime type
Examples
iex> Faker.File.mime_type()
"text/css"
iex> Faker.File.mime_type()
"message/http"
iex> Faker.File.mime_type()
"application/ogg"
iex> Faker.File.mime_type()
"model/x3d+xml"

  



  
    
      
    
    
      mime_type(category)



        
          
        

    

  


  

      

          @spec mime_type(atom()) :: String.t()


      


Returns a random mime type from the category given
Available categories: :application, :audio, :image, :message, :model,
:multipart, :text, :video
Examples
iex> Faker.File.mime_type(:image)
"image/vnd.microsoft.icon"
iex> Faker.File.mime_type(:audio)
"audio/mp4"
iex> Faker.File.mime_type(:application)
"application/xop+xml"
iex> Faker.File.mime_type(:video)
"video/mpeg"

  


        

      


  

    
Faker.Finance 
    



      
Functions for generating financial data

      




  

    
Faker.Finance.Stock 
    



      
Functions for stock data

      


      
        Summary


  
    Functions
  


    
      
        ticker()

      


        Returns a ticker.



    


    
      
        ticker(atom1, atom2)

      


        The first argument is the ticker format.
The second argument is the name of the exchange.



    





      


      
        Functions


        


  
    
      
    
    
      ticker()



        
          
        

    

  


  

      

          @spec ticker() :: String.t()


      


Returns a ticker.
Examples
iex> Faker.Finance.Stock.ticker()
"7401.N225"
iex> Faker.Finance.Stock.ticker()
"4786.HK"
iex> Faker.Finance.Stock.ticker()
"6766.N225"
iex> Faker.Finance.Stock.ticker()
"5166.N225"

  



  
    
      
    
    
      ticker(atom1, atom2)



        
          
        

    

  


  

The first argument is the ticker format.
The second argument is the name of the exchange.
Examples
iex> Faker.Finance.Stock.ticker(:reuters, :nikkei225)
"2110.N225"
iex> Faker.Finance.Stock.ticker(:reuters, :nikkei225)
"7401.N225"
iex> Faker.Finance.Stock.ticker(:reuters, :nikkei225)
"9835.N225"
iex> Faker.Finance.Stock.ticker(:reuters, :nikkei225)
"8304.N225"
iex> Faker.Finance.Stock.ticker(:reuters, :sehk)
"7564.HK"
iex> Faker.Finance.Stock.ticker(:reuters, :sehk)
"3609.HK"
iex> Faker.Finance.Stock.ticker(:reuters, :sehk)
"1085.HK"
iex> Faker.Finance.Stock.ticker(:reuters, :sehk)
"5849.HK"

  


        

      


  

    
Faker.Food 
    



      
Functions for generating food data.

      


      
        Summary


  
    Functions
  


    
      
        description()

      


        Returns a random description.



    


    
      
        dish()

      


        Returns a random complete dish.



    


    
      
        ingredient()

      


        Returns a random ingredient.



    


    
      
        measurement()

      


        Returns a random measurement.



    


    
      
        measurement_size()

      


        Returns a random measurement size.



    


    
      
        metric_measurement()

      


        Returns a random metric measurement.



    


    
      
        spice()

      


        Returns a random spicy ingredient.



    


    
      
        sushi()

      


        Returns a type of sushi.



    





      


      
        Functions


        


  
    
      
    
    
      description()



        
          
        

    

  


  

      

          @spec description() :: String.t()


      


Returns a random description.
Examples
iex> Faker.Food.description()
"Two buttermilk waffles, topped with whipped cream and maple syrup, a side of two eggs served any style, and your choice of smoked bacon or smoked ham."
iex> Faker.Food.description()
"28-day aged 300g USDA Certified Prime Ribeye, rosemary-thyme garlic butter, with choice of two sides."
iex> Faker.Food.description()
"Breaded fried chicken with waffles, and a side of maple syrup."
iex> Faker.Food.description()
"Creamy mascarpone cheese and custard layered between espresso and rum soaked house-made ladyfingers, topped with Valrhona cocoa powder."

  



  
    
      
    
    
      dish()



        
          
        

    

  


  

      

          @spec dish() :: String.t()


      


Returns a random complete dish.
Examples
iex> Faker.Food.dish()
"Vegetable Soup"
iex> Faker.Food.dish()
"Fish and chips"
iex> Faker.Food.dish()
"Pork belly buns"
iex> Faker.Food.dish()
"Pasta Carbonara"

  



  
    
      
    
    
      ingredient()



        
          
        

    

  


  

      

          @spec ingredient() :: String.t()


      


Returns a random ingredient.
Examples
iex> Faker.Food.ingredient()
"Tomatoes"
iex> Faker.Food.ingredient()
"Albacore Tuna"
iex> Faker.Food.ingredient()
"Potatoes"
iex> Faker.Food.ingredient()
"Tinned"

  



  
    
      
    
    
      measurement()



        
          
        

    

  


  

      

          @spec measurement() :: String.t()


      


Returns a random measurement.
Examples
iex> Faker.Food.measurement()
"teaspoon"
iex> Faker.Food.measurement()
"gallon"
iex> Faker.Food.measurement()
"pint"
iex> Faker.Food.measurement()
"cup"

  



  
    
      
    
    
      measurement_size()



        
          
        

    

  


  

      

          @spec measurement_size() :: String.t()


      


Returns a random measurement size.
Examples
iex> Faker.Food.measurement_size()
"1/4"
iex> Faker.Food.measurement_size()
"3"
iex> Faker.Food.measurement_size()
"1"
iex> Faker.Food.measurement_size()
"1/2"

  



  
    
      
    
    
      metric_measurement()



        
          
        

    

  


  

      

          @spec metric_measurement() :: String.t()


      


Returns a random metric measurement.
Examples
iex> Faker.Food.metric_measurement()
"centiliter"
iex> Faker.Food.metric_measurement()
"deciliter"
iex> Faker.Food.metric_measurement()
"liter"
iex> Faker.Food.metric_measurement()
"milliliter"

  



  
    
      
    
    
      spice()



        
          
        

    

  


  

      

          @spec spice() :: String.t()


      


Returns a random spicy ingredient.
Examples
iex> Faker.Food.spice()
"Garlic Salt"
iex> Faker.Food.spice()
"Ras-el-Hanout"
iex> Faker.Food.spice()
"Curry Hot"
iex> Faker.Food.spice()
"Peppercorns Mixed"

  



  
    
      
    
    
      sushi()



        
          
        

    

  


  

      

          @spec sushi() :: String.t()


      


Returns a type of sushi.
Examples
iex> Faker.Food.sushi()
"Whitespotted conger"
iex> Faker.Food.sushi()
"Japanese horse mackerel"
iex> Faker.Food.sushi()
"Salmon"
iex> Faker.Food.sushi()
"Octopus"

  


        

      


  

    
Faker.Food.En 
    



      
Functions for food data in English.

      


      
        Summary


  
    Functions
  


    
      
        description()

      


        Returns a description.



    


    
      
        dish()

      


        Returns a dish.



    


    
      
        ingredient()

      


        Returns an ingredient.



    


    
      
        measurement()

      


        Returns a type of measurement.



    


    
      
        measurement_size()

      


        Returns a measurement size.



    


    
      
        metric_measurement()

      


        Returns a metric measurement.



    


    
      
        spice()

      


        Returns a spicy ingredient.



    


    
      
        sushi()

      


        Returns a type of sushi.



    





      


      
        Functions


        


  
    
      
    
    
      description()



        
          
        

    

  


  

      

          @spec description() :: String.t()


      


Returns a description.
Examples
iex> Faker.Food.En.description()
"Two buttermilk waffles, topped with whipped cream and maple syrup, a side of two eggs served any style, and your choice of smoked bacon or smoked ham."
iex> Faker.Food.En.description()
"28-day aged 300g USDA Certified Prime Ribeye, rosemary-thyme garlic butter, with choice of two sides."
iex> Faker.Food.En.description()
"Breaded fried chicken with waffles, and a side of maple syrup."
iex> Faker.Food.En.description()
"Creamy mascarpone cheese and custard layered between espresso and rum soaked house-made ladyfingers, topped with Valrhona cocoa powder."

  



  
    
      
    
    
      dish()



        
          
        

    

  


  

      

          @spec dish() :: String.t()


      


Returns a dish.
Examples
iex> Faker.Food.En.dish()
"Vegetable Soup"
iex> Faker.Food.En.dish()
"Fish and chips"
iex> Faker.Food.En.dish()
"Pork belly buns"
iex> Faker.Food.En.dish()
"Pasta Carbonara"

  



  
    
      
    
    
      ingredient()



        
          
        

    

  


  

      

          @spec ingredient() :: String.t()


      


Returns an ingredient.
Examples
iex> Faker.Food.En.ingredient()
"Tomatoes"
iex> Faker.Food.En.ingredient()
"Albacore Tuna"
iex> Faker.Food.En.ingredient()
"Potatoes"
iex> Faker.Food.En.ingredient()
"Tinned"

  



  
    
      
    
    
      measurement()



        
          
        

    

  


  

      

          @spec measurement() :: String.t()


      


Returns a type of measurement.
Examples
iex> Faker.Food.En.measurement()
"teaspoon"
iex> Faker.Food.En.measurement()
"gallon"
iex> Faker.Food.En.measurement()
"pint"
iex> Faker.Food.En.measurement()
"cup"

  



  
    
      
    
    
      measurement_size()



        
          
        

    

  


  

      

          @spec measurement_size() :: String.t()


      


Returns a measurement size.
Examples
iex> Faker.Food.En.measurement_size()
"1/4"
iex> Faker.Food.En.measurement_size()
"3"
iex> Faker.Food.En.measurement_size()
"1"
iex> Faker.Food.En.measurement_size()
"1/2"

  



  
    
      
    
    
      metric_measurement()



        
          
        

    

  


  

      

          @spec metric_measurement() :: String.t()


      


Returns a metric measurement.
Examples
iex> Faker.Food.En.metric_measurement()
"centiliter"
iex> Faker.Food.En.metric_measurement()
"deciliter"
iex> Faker.Food.En.metric_measurement()
"liter"
iex> Faker.Food.En.metric_measurement()
"milliliter"

  



  
    
      
    
    
      spice()



        
          
        

    

  


  

      

          @spec spice() :: String.t()


      


Returns a spicy ingredient.
Examples
iex> Faker.Food.En.spice()
"Garlic Salt"
iex> Faker.Food.En.spice()
"Ras-el-Hanout"
iex> Faker.Food.En.spice()
"Curry Hot"
iex> Faker.Food.En.spice()
"Peppercorns Mixed"

  



  
    
      
    
    
      sushi()



        
          
        

    

  


  

      

          @spec sushi() :: String.t()


      


Returns a type of sushi.
Examples
iex> Faker.Food.En.sushi()
"Whitespotted conger"
iex> Faker.Food.En.sushi()
"Japanese horse mackerel"
iex> Faker.Food.En.sushi()
"Salmon"
iex> Faker.Food.En.sushi()
"Octopus"

  


        

      


  

    
Faker.Food.Hy 
    



      
Functions for food data in Armenian.

      


      
        Summary


  
    Functions
  


    
      
        description()

      


        Returns a description.



    


    
      
        dish()

      


        Returns a dish.



    


    
      
        ingredient()

      


        Returns an ingredient.



    


    
      
        measurement()

      


        Returns a type of measurement.



    


    
      
        measurement_size()

      


        Returns a measurement size.



    


    
      
        metric_measurement()

      


        Returns a metric measurement.



    


    
      
        spice()

      


        Returns a spicy ingredient.



    





      


      
        Functions


        


  
    
      
    
    
      description()



        
          
        

    

  


  

      

          @spec description() :: String.t()


      


Returns a description.
Examples
iex> Faker.Food.Hy.description()
"Տապակած հավ վաֆլիների հետ: Մատուցվում է թխկիի օշարակով:"
iex> Faker.Food.Hy.description()
"Երեք ձվի օմլետ ռոքֆոր պանրով, մանր սոխ և խոզապուխտ: Կողքը ավելացրեք խորոված կարտոֆիլ և ֆրանսիական տոստ:"
iex> Faker.Food.Hy.description()
"Ապխտած սաղմոն, խոզապուխտով ձու, կարմիր սոխ և լոլիկի սոուս բուլկիի վրա: Կողքը ավելացրեք խորոված կարտոֆիլ:"
iex> Faker.Food.Hy.description()
"Երեք ձու, համեմ, լոլիկ, սոխ, ավոկադո և հալած պանիր: Կողքը ավելացրեք խորոված կարտոֆիլ և ֆրանսիական տոստ:"

  



  
    
      
    
    
      dish()



        
          
        

    

  


  

      

          @spec dish() :: String.t()


      


Returns a dish.
Examples
iex> Faker.Food.Hy.dish()
"ձու շոտլանդական ձևով"
iex> Faker.Food.Hy.dish()
"պիցցա"
iex> Faker.Food.Hy.dish()
"խորոված կողիկներ"
iex> Faker.Food.Hy.dish()
"սաղմոն նիգիրի"

  



  
    
      
    
    
      ingredient()



        
          
        

    

  


  

      

          @spec ingredient() :: String.t()


      


Returns an ingredient.
Examples
iex> Faker.Food.Hy.ingredient()
"ոսպ"
iex> Faker.Food.Hy.ingredient()
"մշկընկույզ"
iex> Faker.Food.Hy.ingredient()
"ընկույզ"
iex> Faker.Food.Hy.ingredient()
"սամիթ"

  



  
    
      
    
    
      measurement()



        
          
        

    

  


  

      

          @spec measurement() :: String.t()


      


Returns a type of measurement.
Examples
iex> Faker.Food.Hy.measurement()
"թեյի գդալ"
iex> Faker.Food.Hy.measurement()
"գալոն"
iex> Faker.Food.Hy.measurement()
"պինտա"
iex> Faker.Food.Hy.measurement()
"բաժակ"

  



  
    
      
    
    
      measurement_size()



        
          
        

    

  


  

      

          @spec measurement_size() :: String.t()


      


Returns a measurement size.
Examples
iex> Faker.Food.Hy.measurement_size()
"1/4"
iex> Faker.Food.Hy.measurement_size()
"3"
iex> Faker.Food.Hy.measurement_size()
"1"
iex> Faker.Food.Hy.measurement_size()
"1/2"

  



  
    
      
    
    
      metric_measurement()



        
          
        

    

  


  

      

          @spec metric_measurement() :: String.t()


      


Returns a metric measurement.
Examples
iex> Faker.Food.Hy.metric_measurement()
"սանտիլիտր"
iex> Faker.Food.Hy.metric_measurement()
"դեցիլիտր"
iex> Faker.Food.Hy.metric_measurement()
"լիտր"
iex> Faker.Food.Hy.metric_measurement()
"միլիլիտր"

  



  
    
      
    
    
      spice()



        
          
        

    

  


  

      

          @spec spice() :: String.t()


      


Returns a spicy ingredient.
Examples
iex> Faker.Food.Hy.spice()
"կայնեյան պղպեղ"
iex> Faker.Food.Hy.spice()
"պիրի պիրի համեմունք"
iex> Faker.Food.Hy.spice()
"կարամ մասալա"
iex> Faker.Food.Hy.spice()
"մանանեխ"

  


        

      


  

    
Faker.Food.PtBr 
    



      
Functions for food data in Brazilian Portuguese.

      


      
        Summary


  
    Functions
  


    
      
        description()

      


        Returns a description.



    


    
      
        dish()

      


        Returns a dish.



    


    
      
        ingredient()

      


        Returns an ingredient.



    


    
      
        measurement()

      


        Returns a type of measurement.



    


    
      
        measurement_size()

      


        Returns a measurement size.



    


    
      
        metric_measurement()

      


        Returns a metric measurement.



    


    
      
        spice()

      


        Returns a spicy ingredient.



    





      


      
        Functions


        


  
    
      
    
    
      description()



        
          
        

    

  


  

      

          @spec description() :: String.t()


      


Returns a description.
Examples
iex> Faker.Food.PtBr.description()
"Três ovos com coentro, tomate, cebola, abacate e queijo derretido. Acompanhado com torradas ou croissant."
iex> Faker.Food.PtBr.description()
"Três claras de ovos com espinafre, cogumelos, cebola caramelizada, tomate e queijo com baixo teor de gordura. Acompanhado de torradas integrais."
iex> Faker.Food.PtBr.description()
"Três ovos com coentro, tomate, cebola, abacate e queijo derretido. Acompanhado com torradas ou croissant."
iex> Faker.Food.PtBr.description()
"Três claras de ovos com espinafre, cogumelos, cebola caramelizada, tomate e queijo com baixo teor de gordura. Acompanhado de torradas integrais."

  



  
    
      
    
    
      dish()



        
          
        

    

  


  

      

          @spec dish() :: String.t()


      


Returns a dish.
Examples
iex> Faker.Food.PtBr.dish()
"Asinha de frango"
iex> Faker.Food.PtBr.dish()
"Pizza"
iex> Faker.Food.PtBr.dish()
"Salada Caprese"
iex> Faker.Food.PtBr.dish()
"Peixe frito e batata frita"

  



  
    
      
    
    
      ingredient()



        
          
        

    

  


  

      

          @spec ingredient() :: String.t()


      


Returns an ingredient.
Examples
iex> Faker.Food.PtBr.ingredient()
"Avelã"
iex> Faker.Food.PtBr.ingredient()
"Pepino"
iex> Faker.Food.PtBr.ingredient()
"Polenta"
iex> Faker.Food.PtBr.ingredient()
"Vinagre Balsâmico"

  



  
    
      
    
    
      measurement()



        
          
        

    

  


  

      

          @spec measurement() :: String.t()


      


Returns a type of measurement.
Examples
iex> Faker.Food.PtBr.measurement()
"Colher de Chá"
iex> Faker.Food.PtBr.measurement()
"Colher de Sopa"
iex> Faker.Food.PtBr.measurement()
"Colher de Chá"
iex> Faker.Food.PtBr.measurement()
"Litro"

  



  
    
      
    
    
      measurement_size()



        
          
        

    

  


  

      

          @spec measurement_size() :: String.t()


      


Returns a measurement size.
Examples
iex> Faker.Food.PtBr.measurement_size()
"3"
iex> Faker.Food.PtBr.measurement_size()
"1/3"
iex> Faker.Food.PtBr.measurement_size()
"Pitada"
iex> Faker.Food.PtBr.measurement_size()
"2"

  



  
    
      
    
    
      metric_measurement()



        
          
        

    

  


  

      

          @spec metric_measurement() :: String.t()


      


Returns a metric measurement.
Examples
iex> Faker.Food.PtBr.metric_measurement()
"centilitro"
iex> Faker.Food.PtBr.metric_measurement()
"decilitro"
iex> Faker.Food.PtBr.metric_measurement()
"litro"
iex> Faker.Food.PtBr.metric_measurement()
"mililitro"

  



  
    
      
    
    
      spice()



        
          
        

    

  


  

      

          @spec spice() :: String.t()


      


Returns a spicy ingredient.
Examples
iex> Faker.Food.PtBr.spice()
"Açafrão"
iex> Faker.Food.PtBr.spice()
"Chili"
iex> Faker.Food.PtBr.spice()
"Alecrim"
iex> Faker.Food.PtBr.spice()
"Sal do mar grosso"

  


        

      


  

    
Faker.Fruit.En 
    



      
Functions for fruit data in English.

      


      
        Summary


  
    Functions
  


    
      
        fruit()

      


        Returns a fruit.



    





      


      
        Functions


        


  
    
      
    
    
      fruit()



        
          
        

    

  


  

      

          @spec fruit() :: String.t()


      


Returns a fruit.
Examples
iex> Faker.Fruit.En.fruit()
"Kiwano"
iex> Faker.Fruit.En.fruit()
"Sugarcane"
iex> Faker.Fruit.En.fruit()
"Pineapple"
iex> Faker.Fruit.En.fruit()
"Lemon"

  


        

      


  

    
Faker.Fruit.PtBr 
    



      
Functions for fruit data in Brazilian Portuguese.

      


      
        Summary


  
    Functions
  


    
      
        fruit()

      


        Returns a fruit.



    





      


      
        Functions


        


  
    
      
    
    
      fruit()



        
          
        

    

  


  

      

          @spec fruit() :: String.t()


      


Returns a fruit.
Examples
iex> Faker.Fruit.PtBr.fruit()
"Fruta-do-conde"
iex> Faker.Fruit.PtBr.fruit()
"Bergamota"
iex> Faker.Fruit.PtBr.fruit()
"Quixaba"
iex> Faker.Fruit.PtBr.fruit()
"Amora"

  


        

      


  

    
Faker.Gov.It 
    



      
Functions for data created/released by the Italian government,
like fiscal codes

      


      
        Summary


  
    Functions
  


    
      
        fiscal_id()

      


        Returns a random Italian fiscal code



    





      


      
        Functions


        


  
    
      
    
    
      fiscal_id()



        
          
        

    

  


  

      

          @spec fiscal_id() :: binary()


      


Returns a random Italian fiscal code
Examples
iex> Faker.Gov.It.fiscal_id()
"ELRCEA64C50A918F"
iex> Faker.Gov.It.fiscal_id()
"ZSLNKH22M34H480J"
iex> Faker.Gov.It.fiscal_id()
"OCPCVO90M50F353I"
iex> Faker.Gov.It.fiscal_id()
"PQYRFX94R54C681K"

  


        

      


  

    
Faker.Gov.Us 
    



      
Generating US Taxpayer Identification numbers

      


      
        Summary


  
    Functions
  


    
      
        ein()

      


        Returns a random Employer Identification Number



    


    
      
        ssn()

      


        Returns a random US Social Security number



    





      


      
        Functions


        


  
    
      
    
    
      ein()



        
          
        

    

  


  

      

          @spec ein() :: String.t()


      


Returns a random Employer Identification Number
Examples
iex> Faker.Gov.Us.ein()
"04-0389586"
iex> Faker.Gov.Us.ein()
"07-8027034"
iex> Faker.Gov.Us.ein()
"41-6859447"
iex> Faker.Gov.Us.ein()
"83-6106581"

  



  
    
      
    
    
      ssn()



        
          
        

    

  


  

      

          @spec ssn() :: String.t()


      


Returns a random US Social Security number
Examples
iex> Faker.Gov.Us.ssn()
"838-84-5749"
iex> Faker.Gov.Us.ssn()
"719-41-8674"
iex> Faker.Gov.Us.ssn()
"213-54-3766"
iex> Faker.Gov.Us.ssn()
"379-09-6851"

  


        

      


  

    
Faker.Industry 
    



      
Functions for generating Industry related data
Reference https://en.wikipedia.org/wiki/Industry_Classification_Benchmark

      


      
        Summary


  
    Functions
  


    
      
        industry()

      


        Returns a Industry name string



    


    
      
        sector()

      


        Returns a Sector name string



    


    
      
        sub_sector()

      


        Returns a Sub Sector name string



    


    
      
        super_sector()

      


        Returns a Super Sector name string



    





      


      
        Functions


        


  
    
      
    
    
      industry()



        
          
        

    

  


  

      

          @spec industry() :: String.t()


      


Returns a Industry name string
Examples
iex> Faker.Industry.industry()
"Oil & Gas"
iex> Faker.Industry.industry()
"Basic Materials"
iex> Faker.Industry.industry()
"Consumer Services"
iex> Faker.Industry.industry()
"Health Care"

  



  
    
      
    
    
      sector()



        
          
        

    

  


  

      

          @spec sector() :: String.t()


      


Returns a Sector name string
Examples
iex> Faker.Industry.sector()
"Food & Drug Retailers"
iex> Faker.Industry.sector()
"Banks"
iex> Faker.Industry.sector()
"Software & Computer Services"
iex> Faker.Industry.sector()
"Media"

  



  
    
      
    
    
      sub_sector()



        
          
        

    

  


  

      

          @spec sub_sector() :: String.t()


      


Returns a Sub Sector name string
Examples
iex> Faker.Industry.sub_sector()
"Electrical Components & Equipment"
iex> Faker.Industry.sub_sector()
"Publishing"
iex> Faker.Industry.sub_sector()
"Alternative Electricity"
iex> Faker.Industry.sub_sector()
"Forestry"

  



  
    
      
    
    
      super_sector()



        
          
        

    

  


  

      

          @spec super_sector() :: String.t()


      


Returns a Super Sector name string
Examples
iex> Faker.Industry.super_sector()
"Automobiles & Parts"
iex> Faker.Industry.super_sector()
"Banks"
iex> Faker.Industry.super_sector()
"Automobiles & Parts"
iex> Faker.Industry.super_sector()
"Health Care"

  


        

      


  

    
Faker.Industry.En 
    



      
Functions for generating Industry related data in English

      


      
        Summary


  
    Functions
  


    
      
        industry()

      


        Returns a industry name string



    


    
      
        sector()

      


        Returns a sector name string



    


    
      
        sub_sector()

      


        Returns a sub sector name string



    


    
      
        super_sector()

      


        Returns a super sector name string



    





      


      
        Functions


        


  
    
      
    
    
      industry()



        
          
        

    

  


  

      

          @spec industry() :: String.t()


      


Returns a industry name string
Examples
iex> Faker.Industry.En.industry()
"Oil & Gas"
iex> Faker.Industry.En.industry()
"Basic Materials"
iex> Faker.Industry.En.industry()
"Consumer Services"
iex> Faker.Industry.En.industry()
"Health Care"

  



  
    
      
    
    
      sector()



        
          
        

    

  


  

      

          @spec sector() :: String.t()


      


Returns a sector name string
Examples
iex> Faker.Industry.En.sector()
"Food & Drug Retailers"
iex> Faker.Industry.En.sector()
"Banks"
iex> Faker.Industry.En.sector()
"Software & Computer Services"
iex> Faker.Industry.En.sector()
"Media"

  



  
    
      
    
    
      sub_sector()



        
          
        

    

  


  

      

          @spec sub_sector() :: String.t()


      


Returns a sub sector name string
Examples
iex> Faker.Industry.En.sub_sector()
"Electrical Components & Equipment"
iex> Faker.Industry.En.sub_sector()
"Publishing"
iex> Faker.Industry.En.sub_sector()
"Alternative Electricity"
iex> Faker.Industry.En.sub_sector()
"Forestry"

  



  
    
      
    
    
      super_sector()



        
          
        

    

  


  

      

          @spec super_sector() :: String.t()


      


Returns a super sector name string
Examples
iex> Faker.Industry.En.super_sector()
"Automobiles & Parts"
iex> Faker.Industry.En.super_sector()
"Banks"
iex> Faker.Industry.En.super_sector()
"Automobiles & Parts"
iex> Faker.Industry.En.super_sector()
"Health Care"

  


        

      


  

    
Faker.Industry.Hy 
    



      
Functions for generating industry related data in Armenian

      


      
        Summary


  
    Functions
  


    
      
        industry()

      


        Returns an industry name.



    





      


      
        Functions


        


  
    
      
    
    
      industry()



        
          
        

    

  


  

      

          @spec industry() :: String.t()


      


Returns an industry name.
Examples
iex> Faker.Industry.Hy.industry()
"Հյուրընկալություն"
iex> Faker.Industry.Hy.industry()
"Բժշկական Գործունեություն"
iex> Faker.Industry.Hy.industry()
"Վենչուրային և Մասնավոր Կապիտալ"
iex> Faker.Industry.Hy.industry()
"Էներգետիկա"

  


        

      


  

    
Faker.Internet 
    



      
Functions for generating internet related data

      


      
        Summary


  
    Functions
  


    
      
        domain_name()

      


        Returns a complete random domain name



    


    
      
        domain_suffix()

      


        Returns a random domain suffix



    


    
      
        domain_word()

      


        Returns a random domain word



    


    
      
        email()

      


        Returns a complete email based on a domain name



    


    
      
        free_email()

      


        Returns a complete free email based on a free email service [gmail, yahoo, hotmail]



    


    
      
        free_email_service()

      


        Returns a free email service



    


    
      
        image_url()

      


        Returns a random image url from placekitten.com | placehold.it | dummyimage.com



    


    
      
        ip_v4_address()

      


        Generates an ipv4 address



    


    
      
        ip_v6_address()

      


        Generates an ipv6 address



    


    
      
        mac_address()

      


        Generates a mac address



    


    
      
        safe_email()

      


        Returns a safe email



    


    
      
        slug()

      


        Generates a slug
If no words are provided it will generate 2 to 5 random words
If no glue is provided it will use one of -, _ or .



    


    
      
        slug(words)

      


    


    
      
        slug(words, glue)

      


    


    
      
        url()

      


        Returns a random url



    


    
      
        user_name()

      


        Returns a random username



    





      


      
        Functions


        


  
    
      
    
    
      domain_name()



        
          
        

    

  


  

      

          @spec domain_name() :: String.t()


      


Returns a complete random domain name
Examples
iex> Faker.Internet.domain_name()
"blick.org"
iex> Faker.Internet.domain_name()
"schumm.info"
iex> Faker.Internet.domain_name()
"sipes.com"
iex> Faker.Internet.domain_name()
"hane.info"

  



  
    
      
    
    
      domain_suffix()



        
          
        

    

  


  

      

          @spec domain_suffix() :: String.t()


      


Returns a random domain suffix
Examples
iex> Faker.Internet.domain_suffix()
"com"
iex> Faker.Internet.domain_suffix()
"org"
iex> Faker.Internet.domain_suffix()
"name"
iex> Faker.Internet.domain_suffix()
"info"

  



  
    
      
    
    
      domain_word()



        
          
        

    

  


  

      

          @spec domain_word() :: String.t()


      


Returns a random domain word
Examples
iex> Faker.Internet.domain_word()
"blick"
iex> Faker.Internet.domain_word()
"hayes"
iex> Faker.Internet.domain_word()
"schumm"
iex> Faker.Internet.domain_word()
"rolfson"

  



  
    
      
    
    
      email()



        
          
        

    

  


  

      

          @spec email() :: String.t()


      


Returns a complete email based on a domain name
Examples
iex> Faker.Internet.email()
"elizabeth2056@rolfson.net"
iex> Faker.Internet.email()
"conor2058@schiller.com"
iex> Faker.Internet.email()
"frederique2063@metz.name"
iex> Faker.Internet.email()
"jana2042@price.biz"

  



  
    
      
    
    
      free_email()



        
          
        

    

  


  

      

          @spec free_email() :: String.t()


      


Returns a complete free email based on a free email service [gmail, yahoo, hotmail]
Examples
iex> Faker.Internet.free_email()
"elizabeth2056@hotmail.com"
iex> Faker.Internet.free_email()
"trycia1982@hotmail.com"
iex> Faker.Internet.free_email()
"delphine_hartmann@yahoo.com"
iex> Faker.Internet.free_email()
"mitchel_rutherford@yahoo.com"

  



  
    
      
    
    
      free_email_service()



        
          
        

    

  


  

      

          @spec free_email_service() :: String.t()


      


Returns a free email service
Examples
iex> Faker.Internet.free_email_service()
"gmail.com"
iex> Faker.Internet.free_email_service()
"hotmail.com"
iex> Faker.Internet.free_email_service()
"gmail.com"
iex> Faker.Internet.free_email_service()
"hotmail.com"

  



  
    
      
    
    
      image_url()



        
          
        

    

  


  

      

          @spec image_url() :: String.t()


      


Returns a random image url from placekitten.com | placehold.it | dummyimage.com
Examples
iex> Faker.Internet.image_url()
"https://placekitten.com/131/131"
iex> Faker.Internet.image_url()
"https://placekitten.com/554/554"
iex> Faker.Internet.image_url()
"https://picsum.photos/936"
iex> Faker.Internet.image_url()
"https://picsum.photos/541"

  



  
    
      
    
    
      ip_v4_address()



        
          
        

    

  


  

      

          @spec ip_v4_address() :: String.t()


      


Generates an ipv4 address
Examples
iex> Faker.Internet.ip_v4_address()
"214.217.139.136"
iex> Faker.Internet.ip_v4_address()
"200.102.244.150"
iex> Faker.Internet.ip_v4_address()
"219.212.222.123"
iex> Faker.Internet.ip_v4_address()
"164.141.15.82"

  



  
    
      
    
    
      ip_v6_address()



        
          
        

    

  


  

      

          @spec ip_v6_address() :: String.t()


      


Generates an ipv6 address
Examples
iex> Faker.Internet.ip_v6_address()
"A2D6:F5D9:BD8B:C588:0DC8:9566:43F4:B196"
iex> Faker.Internet.ip_v6_address()
"05DB:FAD4:88DE:397B:75A4:A98D:DF0F:1F52"
iex> Faker.Internet.ip_v6_address()
"6229:4EFA:2F7B:FEF9:EB07:0128:85B2:DC72"
iex> Faker.Internet.ip_v6_address()
"E867:34BC:715B:FB7C:7E96:AF4F:C733:A82D"

  



  
    
      
    
    
      mac_address()



        
          
        

    

  


  

      

          @spec mac_address() :: String.t()


      


Generates a mac address
Examples
iex> Faker.Internet.mac_address()
"d6:d9:8b:88:c8:66"
iex> Faker.Internet.mac_address()
"f4:96:db:d4:de:7b"
iex> Faker.Internet.mac_address()
"a4:8d:0f:52:29:fa"
iex> Faker.Internet.mac_address()
"7b:f9:07:28:b2:72"

  



  
    
      
    
    
      safe_email()



        
          
        

    

  


  

      

          @spec safe_email() :: String.t()


      


Returns a safe email
Examples
iex> Faker.Internet.safe_email()
"elizabeth2056@example.net"
iex> Faker.Internet.safe_email()
"trycia1982@example.net"
iex> Faker.Internet.safe_email()
"delphine_hartmann@example.com"
iex> Faker.Internet.safe_email()
"mitchel_rutherford@example.com"

  



  
    
      
    
    
      slug()



        
          
        

    

  


  

      

          @spec slug() :: String.t()


      


Generates a slug
If no words are provided it will generate 2 to 5 random words
If no glue is provided it will use one of -, _ or .
Examples
iex> Faker.Internet.slug()
"deleniti-sint-consequatur-ut"
iex> Faker.Internet.slug()
"cumque_sit_aut_expedita"
iex> Faker.Internet.slug(["foo", "bar"])
"foo_bar"
iex> Faker.Internet.slug(["foo", "bar"], ["."])
"foo.bar"

  



  
    
      
    
    
      slug(words)



        
          
        

    

  


  

      

          @spec slug([String.t()]) :: String.t()


      



  



  
    
      
    
    
      slug(words, glue)



        
          
        

    

  


  

      

          @spec slug([String.t()], [String.t()]) :: String.t()


      



  



  
    
      
    
    
      url()



        
          
        

    

  


  

      

          @spec url() :: String.t()


      


Returns a random url
Examples
iex> Faker.Internet.url()
"http://hayes.name"
iex> Faker.Internet.url()
"http://sipes.com"
iex> Faker.Internet.url()
"http://padberg.name"
iex> Faker.Internet.url()
"http://hartmann.biz"

  



  
    
      
    
    
      user_name()



        
          
        

    

  


  

      

          @spec user_name() :: String.t()


      


Returns a random username
Examples
iex> Faker.Internet.user_name()
"elizabeth2056"
iex> Faker.Internet.user_name()
"reese1921"
iex> Faker.Internet.user_name()
"aniya1972"
iex> Faker.Internet.user_name()
"bianka2054"

  


        

      


  

    
Faker.Internet.En 
    



      
Generating internet related data in English

      


      
        Summary


  
    Functions
  


    
      
        domain_suffix()

      


        Returns a random domain suffix



    


    
      
        free_email_service()

      


        Returns a random free email service name



    





      


      
        Functions


        


  
    
      
    
    
      domain_suffix()



        
          
        

    

  


  

      

          @spec domain_suffix() :: String.t()


      


Returns a random domain suffix
Examples
iex> Faker.Internet.En.domain_suffix()
"com"
iex> Faker.Internet.En.domain_suffix()
"org"
iex> Faker.Internet.En.domain_suffix()
"name"
iex> Faker.Internet.En.domain_suffix()
"info"

  



  
    
      
    
    
      free_email_service()



        
          
        

    

  


  

      

          @spec free_email_service() :: String


      


Returns a random free email service name
Examples
iex> Faker.Internet.En.free_email_service()
"gmail.com"
iex> Faker.Internet.En.free_email_service()
"hotmail.com"
iex> Faker.Internet.En.free_email_service()
"gmail.com"
iex> Faker.Internet.En.free_email_service()
"hotmail.com"

  


        

      


  

    
Faker.Internet.Es 
    



      
Generating internet related data in Spanish

      


      
        Summary


  
    Functions
  


    
      
        domain_suffix()

      


        Returns a random domain suffix



    


    
      
        free_email_service()

      


        Returns a random free email service name



    





      


      
        Functions


        


  
    
      
    
    
      domain_suffix()



        
          
        

    

  


  

      

          @spec domain_suffix() :: String.t()


      


Returns a random domain suffix
Examples
iex> Faker.Internet.Es.domain_suffix()
"com"
iex> Faker.Internet.Es.domain_suffix()
"es"
iex> Faker.Internet.Es.domain_suffix()
"com"
iex> Faker.Internet.Es.domain_suffix()
"org"

  



  
    
      
    
    
      free_email_service()



        
          
        

    

  


  

      

          @spec free_email_service() :: String


      


Returns a random free email service name
Examples
iex> Faker.Internet.Es.free_email_service()
"gmail.com"
iex> Faker.Internet.Es.free_email_service()
"hotmail.com"
iex> Faker.Internet.Es.free_email_service()
"gmail.com"
iex> Faker.Internet.Es.free_email_service()
"hotmail.com"

  


        

      


  

    
Faker.Internet.Hy 
    



      
Functions for generating internet related data in Armenian

      


      
        Summary


  
    Functions
  


    
      
        domain_suffix()

      


        Returns a random domain suffix.



    


    
      
        free_email_service()

      


        Returns a random free email service name.



    





      


      
        Functions


        


  
    
      
    
    
      domain_suffix()



        
          
        

    

  


  

      

          @spec domain_suffix() :: String.t()


      


Returns a random domain suffix.
Examples
iex> Faker.Internet.Hy.domain_suffix()
"am"
iex> Faker.Internet.Hy.domain_suffix()
"com"
iex> Faker.Internet.Hy.domain_suffix()
"am"
iex> Faker.Internet.Hy.domain_suffix()
"org"

  



  
    
      
    
    
      free_email_service()



        
          
        

    

  


  

      

          @spec free_email_service() :: String


      


Returns a random free email service name.
Examples
iex> Faker.Internet.Hy.free_email_service()
"hotmail.com"
iex> Faker.Internet.Hy.free_email_service()
"yandex.ru"
iex> Faker.Internet.Hy.free_email_service()
"freenet.am"
iex> Faker.Internet.Hy.free_email_service()
"yahoo.com"

  


        

      


  

    
Faker.Internet.It 
    



      
Generating internet related data in Italian

      


      
        Summary


  
    Functions
  


    
      
        domain_suffix()

      


        Returns a random domain suffix



    


    
      
        free_email_service()

      


        Returns a random free email service name



    





      


      
        Functions


        


  
    
      
    
    
      domain_suffix()



        
          
        

    

  


  

      

          @spec domain_suffix() :: String.t()


      


Returns a random domain suffix
Examples
iex> Faker.Internet.It.domain_suffix()
"com"
iex> Faker.Internet.It.domain_suffix()
"it"
iex> Faker.Internet.It.domain_suffix()
"com"
iex> Faker.Internet.It.domain_suffix()
"biz"

  



  
    
      
    
    
      free_email_service()



        
          
        

    

  


  

      

          @spec free_email_service() :: String.t()


      


Returns a random free email service name
Examples
iex> Faker.Internet.It.free_email_service()
"virgilio.it"
iex> Faker.Internet.It.free_email_service()
"yahoo.it"
iex> Faker.Internet.It.free_email_service()
"aruba.it"
iex> Faker.Internet.It.free_email_service()
"gmail.com"

  


        

      


  

    
Faker.Internet.PtBr 
    



      
Generating internet related data in Brazilian Portuguese

      


      
        Summary


  
    Functions
  


    
      
        domain_suffix()

      


        Returns a random domain suffix



    


    
      
        free_email_service()

      


        Returns a random free email service name



    





      


      
        Functions


        


  
    
      
    
    
      domain_suffix()



        
          
        

    

  


  

      

          @spec domain_suffix() :: String.t()


      


Returns a random domain suffix
Examples
iex> Faker.Internet.PtBr.domain_suffix()
"br"
iex> Faker.Internet.PtBr.domain_suffix()
"org"
iex> Faker.Internet.PtBr.domain_suffix()
"name"
iex> Faker.Internet.PtBr.domain_suffix()
"info"

  



  
    
      
    
    
      free_email_service()



        
          
        

    

  


  

      

          @spec free_email_service() :: String


      


Returns a random free email service name
Examples
iex> Faker.Internet.PtBr.free_email_service()
"gmail.com"
iex> Faker.Internet.PtBr.free_email_service()
"yahoo.com"
iex> Faker.Internet.PtBr.free_email_service()
"gmail.com"
iex> Faker.Internet.PtBr.free_email_service()
"bol.com.br"

  


        

      


  

    
Faker.Internet.StatusCode 
    



      
Functions for generating HTTP status codes

      


      
        Summary


  
    Functions
  


    
      
        client_error()

      


        Returns a client error status code



    


    
      
        information()

      


        Returns an information status code



    


    
      
        redirect()

      


        Returns a redirect status code



    


    
      
        server_error()

      


        Returns a server error status code



    


    
      
        success()

      


        Returns a success status code



    





      


      
        Functions


        


  
    
      
    
    
      client_error()



        
          
        

    

  


  

      

          @spec client_error() :: 400..418 | 421..426 | 428..429 | 431 | 451


      


Returns a client error status code
Examples
iex> Faker.Internet.StatusCode.client_error()
428
iex> Faker.Internet.StatusCode.client_error()
405
iex> Faker.Internet.StatusCode.client_error()
424
iex> Faker.Internet.StatusCode.client_error()
424

  



  
    
      
    
    
      information()



        
          
        

    

  


  

      

          @spec information() :: 100..103


      


Returns an information status code
Examples
iex> Faker.Internet.StatusCode.information()
102
iex> Faker.Internet.StatusCode.information()
101
iex> Faker.Internet.StatusCode.information()
103
iex> Faker.Internet.StatusCode.information()
100

  



  
    
      
    
    
      redirect()



        
          
        

    

  


  

      

          @spec redirect() :: 300..308


      


Returns a redirect status code
Examples
iex> Faker.Internet.StatusCode.redirect()
303
iex> Faker.Internet.StatusCode.redirect()
302
iex> Faker.Internet.StatusCode.redirect()
306
iex> Faker.Internet.StatusCode.redirect()
305

  



  
    
      
    
    
      server_error()



        
          
        

    

  


  

      

          @spec server_error() :: 500..508 | 510..511


      


Returns a server error status code
Examples
iex> Faker.Internet.StatusCode.server_error()
503
iex> Faker.Internet.StatusCode.server_error()
506
iex> Faker.Internet.StatusCode.server_error()
506
iex> Faker.Internet.StatusCode.server_error()
506

  



  
    
      
    
    
      success()



        
          
        

    

  


  

      

          @spec success() :: 200..208 | 226


      


Returns a success status code
Examples
iex> Faker.Internet.StatusCode.success()
200
iex> Faker.Internet.StatusCode.success()
201
iex> Faker.Internet.StatusCode.success()
205
iex> Faker.Internet.StatusCode.success()
204

  


        

      


  

    
Faker.Internet.UserAgent 
    



      
Functions for generating user agent strings

      


      
        Summary


  
    Functions
  


    
      
        bot_user_agent()

      


        Returns a user agent string for a bot/crawler



    


    
      
        desktop_user_agent()

      


        Returns a user agent string for a desktop browser



    


    
      
        ereader_user_agent()

      


        Returns a user agent string for an e-reader



    


    
      
        game_console_user_agent()

      


        Returns a user agent string for a game console



    


    
      
        mobile_user_agent()

      


        Returns a user agent string for a mobile device



    


    
      
        set_top_user_agent()

      


        Returns a user agent string for a set top device



    


    
      
        tablet_user_agent()

      


        Returns a user agent string for a tablet



    


    
      
        user_agent()

      


        Returns a user agent string



    





      


      
        Functions


        


  
    
      
    
    
      bot_user_agent()



        
          
        

    

  


  

      

          @spec bot_user_agent() :: String.t()


      


Returns a user agent string for a bot/crawler
Examples
iex> Faker.Internet.UserAgent.bot_user_agent()
"Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)"
iex> Faker.Internet.UserAgent.bot_user_agent()
"Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"
iex> Faker.Internet.UserAgent.bot_user_agent()
"Mozilla/5.0 (compatible; YandexBot/3.0; +http://yandex.com/bots)"
iex> Faker.Internet.UserAgent.bot_user_agent()
"Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)"

  



  
    
      
    
    
      desktop_user_agent()



        
          
        

    

  


  

      

          @spec desktop_user_agent() :: String.t()


      


Returns a user agent string for a desktop browser
Examples
iex> Faker.Internet.UserAgent.desktop_user_agent()
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.246"
iex> Faker.Internet.UserAgent.desktop_user_agent()
"Mozilla/5.0 (X11; CrOS x86_64 8172.45.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.64 Safari/537.36"
iex> Faker.Internet.UserAgent.desktop_user_agent()
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.246"
iex> Faker.Internet.UserAgent.desktop_user_agent()
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:15.0) Gecko/20100101 Firefox/15.0.1"

  



  
    
      
    
    
      ereader_user_agent()



        
          
        

    

  


  

      

          @spec ereader_user_agent() :: String.t()


      


Returns a user agent string for an e-reader
Examples
iex> Faker.Internet.UserAgent.ereader_user_agent()
"Mozilla/5.0 (X11; U; Linux armv7l like Android; en-us) AppleWebKit/531.2+ (KHTML, like Gecko) Version/5.0 Safari/533.2+ Kindle/3.0+"
iex> Faker.Internet.UserAgent.ereader_user_agent()
"Mozilla/5.0 (Linux; U; en-US) AppleWebKit/528.5+ (KHTML, like Gecko, Safari/528.5+) Version/4.0 Kindle/3.0 (screen 600x800; rotate)"
iex> Faker.Internet.UserAgent.ereader_user_agent()
"Mozilla/5.0 (Linux; U; en-US) AppleWebKit/528.5+ (KHTML, like Gecko, Safari/528.5+) Version/4.0 Kindle/3.0 (screen 600x800; rotate)"
iex> Faker.Internet.UserAgent.ereader_user_agent()
"Mozilla/5.0 (X11; U; Linux armv7l like Android; en-us) AppleWebKit/531.2+ (KHTML, like Gecko) Version/5.0 Safari/533.2+ Kindle/3.0+"

  



  
    
      
    
    
      game_console_user_agent()



        
          
        

    

  


  

      

          @spec game_console_user_agent() :: String.t()


      


Returns a user agent string for a game console
Examples
iex> Faker.Internet.UserAgent.game_console_user_agent()
"Mozilla/5.0 (Nintendo WiiU) AppleWebKit/536.30 (KHTML, like Gecko) NX/3.0.4.2.12 NintendoBrowser/4.3.1.11264.US"
iex> Faker.Internet.UserAgent.game_console_user_agent()
"Mozilla/5.0 (Windows Phone 10.0; Android 4.2.1; Xbox; Xbox One) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2486.0 Mobile Safari/537.36 Edge/13.10586"
iex> Faker.Internet.UserAgent.game_console_user_agent()
"Mozilla/5.0 (Nintendo WiiU) AppleWebKit/536.30 (KHTML, like Gecko) NX/3.0.4.2.12 NintendoBrowser/4.3.1.11264.US"
iex> Faker.Internet.UserAgent.game_console_user_agent()
"Mozilla/5.0 (Nintendo 3DS; U; ; en) Version/1.7412.EU"

  



  
    
      
    
    
      mobile_user_agent()



        
          
        

    

  


  

      

          @spec mobile_user_agent() :: String.t()


      


Returns a user agent string for a mobile device
Examples
iex> Faker.Internet.UserAgent.mobile_user_agent()
"Mozilla/5.0 (Linux; Android 6.0.1; SM-G920V Build/MMB29K) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.98 Mobile Safari/537.36"
iex> Faker.Internet.UserAgent.mobile_user_agent()
"Mozilla/5.0 (Linux; Android 6.0; HTC One M9 Build/MRA58K) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.98 Mobile Safari/537.36"
iex> Faker.Internet.UserAgent.mobile_user_agent()
"Mozilla/5.0 (Linux; Android 6.0.1; Nexus 6P Build/MMB29P) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.83 Mobile Safari/537.36"
iex> Faker.Internet.UserAgent.mobile_user_agent()
"Mozilla/5.0 (Windows Phone 10.0; Android 4.2.1; Microsoft; Lumia 950) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2486.0 Mobile Safari/537.36 Edge/13.10586"

  



  
    
      
    
    
      set_top_user_agent()



        
          
        

    

  


  

      

          @spec set_top_user_agent() :: String.t()


      


Returns a user agent string for a set top device
Examples
iex> Faker.Internet.UserAgent.set_top_user_agent()
"Mozilla/5.0 (CrKey armv7l 1.5.16041) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/31.0.1650.0 Safari/537.36"
iex> Faker.Internet.UserAgent.set_top_user_agent()
"Mozilla/5.0 (Linux; U; Android 4.2.2; he-il; NEO-X5-116A Build/JDQ39) AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Safari/534.30"
iex> Faker.Internet.UserAgent.set_top_user_agent()
"Mozilla/5.0 (CrKey armv7l 1.5.16041) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/31.0.1650.0 Safari/537.36"
iex> Faker.Internet.UserAgent.set_top_user_agent()
"AppleTV5,3/9.1.1"

  



  
    
      
    
    
      tablet_user_agent()



        
          
        

    

  


  

      

          @spec tablet_user_agent() :: String.t()


      


Returns a user agent string for a tablet
Examples
iex> Faker.Internet.UserAgent.tablet_user_agent()
"Mozilla/5.0 (Linux; Android 7.0; Pixel C Build/NRD90M; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/52.0.2743.98 Safari/537.36"
iex> Faker.Internet.UserAgent.tablet_user_agent()
"Mozilla/5.0 (Linux; Android 5.0.2; LG-V410/V41020c Build/LRX22G) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/34.0.1847.118 Safari/537.36"
iex> Faker.Internet.UserAgent.tablet_user_agent()
"Mozilla/5.0 (Linux; Android 5.0.2; SAMSUNG SM-T550 Build/LRX22G) AppleWebKit/537.36 (KHTML, like Gecko) SamsungBrowser/3.3 Chrome/38.0.2125.102 Safari/537.36"
iex> Faker.Internet.UserAgent.tablet_user_agent()
"Mozilla/5.0 (Linux; Android 5.1.1; SHIELD Tablet Build/LMY48C) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.98 Safari/537.36"

  



  
    
      
    
    
      user_agent()



        
          
        

    

  


  

      

          @spec user_agent() :: String.t()


      


Returns a user agent string
Examples
iex> Faker.Internet.UserAgent.user_agent()
"Mozilla/5.0 (Linux; Android 6.0; HTC One M9 Build/MRA58K) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.98 Mobile Safari/537.36"
iex> Faker.Internet.UserAgent.user_agent()
"Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)"
iex> Faker.Internet.UserAgent.user_agent()
"Mozilla/5.0 (X11; U; Linux armv7l like Android; en-us) AppleWebKit/531.2+ (KHTML, like Gecko) Version/5.0 Safari/533.2+ Kindle/3.0+"
iex> Faker.Internet.UserAgent.user_agent()
"Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)"

  


        

      


  

    
Faker.Lorem 
    



      
Functions for generating Lorem Ipsum data

      


      
        Summary


  
    Functions
  


    
      
        characters(range_or_length \\ 15..255)

      


        Returns a character list of the given length.



    


    
      
        paragraph(range \\ 2..5)

      


        Returns a string with a given amount of sentences.



    


    
      
        paragraphs(range \\ 2..5)

      


        Returns a list with a given amount of paragraphs.



    


    
      
        sentence(range \\ 4..10)

      


        Returns a string with a given amount of words.



    


    
      
        sentence(num, mark)

      


        Returns a string with an amount of words equal to the parameter provided,
concatenating the specified mark



    


    
      
        sentences(range \\ 2..5)

      


        Returns a list of strings of the given length, each representing a sentence.



    


    
      
        word()

      


        Returns a random word from @data



    


    
      
        words(range \\ 3..6)

      


        Returns a list of strings of the given length, each representing a word.



    





      


      
        Functions


        


    

  
    
      
    
    
      characters(range_or_length \\ 15..255)



        
          
        

    

  


  

      

          @spec characters(integer() | Range.t()) :: [char()]


      


Returns a character list of the given length.
If a range is provided, the length of the list is random in between the
specified range.
Defaults to a range between 15 and 255 (inclusive).
Examples
iex> Faker.Lorem.characters()
~c'ppkQqaIfGqxsjFoNITNnu6eXyJicLJNth88PrhGDhwp4LNQMt5pCFh7XGEZUiBOjqwcnSUTH94vu8a9XKUwNAs48lHzPITbFXSfTS0pHfBSmHkbj9kOsd7qRuGeXKTgCgI1idI3uwENwTqc'

iex> Faker.Lorem.characters(3..5)
~c'ppk'

iex> Faker.Lorem.characters(2)
~c'Ap'

iex> Faker.Lorem.characters(7)
~c'AppkQqa'

  



    

  
    
      
    
    
      paragraph(range \\ 2..5)



        
          
        

    

  


  

      

          @spec paragraph(integer() | Range.t()) :: String.t()


      


Returns a string with a given amount of sentences.
If a range is provided, the number of sentences is random in between the
specified range.
Defaults to a range between 2 and 5 (inclusive).
Examples
iex> Faker.Lorem.paragraph()
"Deleniti consequatur et qui vitae et. Sit aut expedita cumque est necessitatibus beatae ex sunt! Soluta asperiores qui vitae animi et id et vitae. Quisquam corporis quisquam ab harum!"
iex> Faker.Lorem.paragraph(1..2)
"Numquam maxime ut aut inventore eius rerum beatae. Qui officia vel quaerat expedita."
iex> Faker.Lorem.paragraph(1)
"Perspiciatis rerum nam repellendus inventore nihil."
iex> Faker.Lorem.paragraph(2)
"Sequi ducimus qui voluptates magni quisquam sed odio. Vel error non impedit tempora minus."

  



    

  
    
      
    
    
      paragraphs(range \\ 2..5)



        
          
        

    

  


  

      

          @spec paragraphs(integer() | Range.t()) :: [String.t()]


      


Returns a list with a given amount of paragraphs.
If a range is provided, the number of paragraphs is random in between the
specified range.
Defaults to a range between 2 and 5 (inclusive)
Examples
iex> Faker.Lorem.paragraphs()
[
  "Consequatur et qui vitae? Et sit aut expedita cumque est necessitatibus beatae ex. Possimus soluta asperiores qui vitae.",
  "Et vitae vitae ut quisquam corporis quisquam ab harum ipsa. Numquam maxime ut aut inventore eius rerum beatae. Qui officia vel quaerat expedita. Perspiciatis rerum nam repellendus inventore nihil. Sequi ducimus qui voluptates magni quisquam sed odio.",
  "Error non impedit tempora minus voluptatem qui fugit. Ab consectetur harum earum possimus. Provident quisquam modi accusantium eligendi numquam illo voluptas. Est non id quibusdam qui omnis?",
  "Dicta dolores at ut delectus magni atque eos beatae nulla. Laudantium qui dolorem pariatur voluptatibus sed et enim?"
]
iex> Faker.Lorem.paragraphs(2..3)
[
  "Voluptate reiciendis repellat et praesentium quia sed nemo. Vero repellat cumque nihil similique repudiandae corrupti rerum? Accusamus suscipit perspiciatis cum et sint dolore et ut. Eos reprehenderit cupiditate omnis et doloremque omnis.",
  "Quo et est culpa eum ex et veniam aut aut! Labore fuga tenetur alias est provident?",
  "Illo consequatur maiores illum et quia culpa sunt! Cumque porro ut eum porro est id maxime dolorum animi. Deserunt ipsa consequuntur eveniet asperiores. Quia numquam voluptas vitae repellat tempore."
]
iex> Faker.Lorem.paragraphs(1)
["Voluptas harum modi omnis quam dolor a aliquam officiis. Neque voluptas consequatur sed cupiditate dolorum pariatur et."]
iex> Faker.Lorem.paragraphs(2)
[
  "Voluptatem natus amet eius eos non dolorum quaerat dolores pariatur. Aliquam rerum ab voluptatem exercitationem nobis enim delectus tempore eos. Ex enim dolore ut consequuntur eaque expedita dicta eius totam. A eveniet ab magni rerum enim consequatur.",
  "Nihil laudantium ea veniam necessitatibus qui. Minus ad omnis quaerat quidem impedit sint. Id ut repellat qui repudiandae!"
]

  



    

  
    
      
    
    
      sentence(range \\ 4..10)



        
          
        

    

  


  

      

          @spec sentence(integer() | Range.t()) :: String.t()


      


Returns a string with a given amount of words.
If a range is provided, the number of words is random in between the
specified range.
Defaults to a range between 4 and 10 (inclusive).
Examples
iex> Faker.Lorem.sentence()
"Sint deleniti consequatur et qui vitae et quibusdam et sit."
iex> Faker.Lorem.sentence(2..3)
"Cumque est?"
iex> Faker.Lorem.sentence(3)
"Beatae ex sunt."
iex> Faker.Lorem.sentence(5)
"Possimus soluta asperiores qui vitae."

  



  
    
      
    
    
      sentence(num, mark)



        
          
        

    

  


  

      

          @spec sentence(integer(), binary()) :: String.t()


      


Returns a string with an amount of words equal to the parameter provided,
concatenating the specified mark
Examples
iex> Faker.Lorem.sentence(7, "...")
"Aliquam ut sint deleniti consequatur et qui..."
iex> Faker.Lorem.sentence(1, "?")
"Vitae?"
iex> Faker.Lorem.sentence(5, ".")
"Et quibusdam et sit aut."
iex> Faker.Lorem.sentence(3, ";")
"Expedita cumque est;"

  



    

  
    
      
    
    
      sentences(range \\ 2..5)



        
          
        

    

  


  

      

          @spec sentences(integer() | Range.t()) :: [String.t()]


      


Returns a list of strings of the given length, each representing a sentence.
If a range is provided, the length of the list is random in between the
specified range.
Defaults to a range between 2 and 5 (inclusive).
Examples
iex> Faker.Lorem.sentences()
[
  "Deleniti consequatur et qui vitae et.",
  "Sit aut expedita cumque est necessitatibus beatae ex sunt!",
  "Soluta asperiores qui vitae animi et id et vitae.",
  "Quisquam corporis quisquam ab harum!"
]
iex> Faker.Lorem.sentences(3..4)
[
  "Numquam maxime ut aut inventore eius rerum beatae.",
  "Qui officia vel quaerat expedita.",
  "Perspiciatis rerum nam repellendus inventore nihil.",
  "Sequi ducimus qui voluptates magni quisquam sed odio."
]
iex> Faker.Lorem.sentences(4)
[
  "Vel error non impedit tempora minus.",
  "Fugit cupiditate fuga ab consectetur harum earum possimus totam.",
  "Quisquam modi accusantium eligendi numquam.",
  "Quod blanditiis est non id quibusdam qui omnis alias!"
]
iex> Faker.Lorem.sentences(3)
[
  "Dicta dolores at ut delectus magni atque eos beatae nulla.",
  "Laudantium qui dolorem pariatur voluptatibus sed et enim?",
  "Minima laudantium voluptate reiciendis repellat."
]

  



  
    
      
    
    
      word()



        
          
        

    

  


  

      

          @spec word() :: String.t()


      


Returns a random word from @data
Examples
iex> Faker.Lorem.word()
"aliquam"
iex> Faker.Lorem.word()
"ut"
iex> Faker.Lorem.word()
"sint"
iex> Faker.Lorem.word()
"deleniti"

  



    

  
    
      
    
    
      words(range \\ 3..6)



        
          
        

    

  


  

      

          @spec words(integer() | Range.t()) :: [String.t()]


      


Returns a list of strings of the given length, each representing a word.
If a range is provided, the length of the list is random in between the
provided range.
Defaults to a range between 3 and 6.
Examples
iex> Faker.Lorem.words()
["ut", "sint", "deleniti", "consequatur", "et"]
iex> Faker.Lorem.words(1..2)
["vitae"]
iex> Faker.Lorem.words(2)
["et", "quibusdam"]
iex> Faker.Lorem.words(6)
["et", "sit", "aut", "expedita", "cumque", "est"]

  


        

      


  

    
Faker.Lorem.Shakespeare 
    



      
Random quotes from William Shakespeare's plays, sonnets and poems.

      


      
        Summary


  
    Functions
  


    
      
        as_you_like_it()

      


        Return random quote from "As You Like It" comedy.



    


    
      
        hamlet()

      


        Return random quote from "The Tragedy of Hamlet, Prince of Denmark" tragedy.



    


    
      
        king_richard_iii()

      


        Return random quote from "Richard III" play.



    


    
      
        romeo_and_juliet()

      


        Return random quote from "Romeo and Juliet" tragedy.



    





      


      
        Functions


        


  
    
      
    
    
      as_you_like_it()



        
          
        

    

  


  

      

          @spec as_you_like_it() :: String.t()


      


Return random quote from "As You Like It" comedy.
Examples
iex> Faker.Lorem.Shakespeare.as_you_like_it()
"For ever and a day."
iex> Faker.Lorem.Shakespeare.as_you_like_it()
"Can one desire too much of a good thing?."
iex> Faker.Lorem.Shakespeare.as_you_like_it()
"How bitter a thing it is to look into happiness through another man's eyes!"
iex> Faker.Lorem.Shakespeare.as_you_like_it()
"All the world's a stage, and all the men and women merely players. They have their exits and their entrances; And one man in his time plays many parts."

  



  
    
      
    
    
      hamlet()



        
          
        

    

  


  

      

          @spec hamlet() :: String.t()


      


Return random quote from "The Tragedy of Hamlet, Prince of Denmark" tragedy.
Examples
iex> Faker.Lorem.Shakespeare.hamlet()
"Brevity is the soul of wit."
iex> Faker.Lorem.Shakespeare.hamlet()
"And it must follow, as the night the day, thou canst not then be false to any man."
iex> Faker.Lorem.Shakespeare.hamlet()
"Do you think I am easier to be played on than a pipe?"
iex> Faker.Lorem.Shakespeare.hamlet()
"Rich gifts wax poor when givers prove unkind."

  



  
    
      
    
    
      king_richard_iii()



        
          
        

    

  


  

      

          @spec king_richard_iii() :: String.t()


      


Return random quote from "Richard III" play.
Examples
iex> Faker.Lorem.Shakespeare.king_richard_iii()
"The king's name is a tower of strength."
iex> Faker.Lorem.Shakespeare.king_richard_iii()
"A horse! a horse! my kingdom for a horse!"
iex> Faker.Lorem.Shakespeare.king_richard_iii()
"So wise so young, they say, do never live long."
iex> Faker.Lorem.Shakespeare.king_richard_iii()
"Now is the winter of our discontent."

  



  
    
      
    
    
      romeo_and_juliet()



        
          
        

    

  


  

      

          @spec romeo_and_juliet() :: String.t()


      


Return random quote from "Romeo and Juliet" tragedy.
Examples
iex> Faker.Lorem.Shakespeare.romeo_and_juliet()
"What's in a name? That which we call a rose by any other name would smell as sweet."
iex> Faker.Lorem.Shakespeare.romeo_and_juliet()
"For you and I are past our dancing days."
iex> Faker.Lorem.Shakespeare.romeo_and_juliet()
"For you and I are past our dancing days."
iex> Faker.Lorem.Shakespeare.romeo_and_juliet()
"For you and I are past our dancing days."

  


        

      


  

    
Faker.Lorem.Shakespeare.En 
    



      
Random quotes from William Shakespeare's plays, sonnets and poems in English.

      


      
        Summary


  
    Functions
  


    
      
        as_you_like_it()

      


        Return random quote from "As You Like It" comedy.



    


    
      
        hamlet()

      


        Return random quote from "The Tragedy of Hamlet, Prince of Denmark" tragedy.



    


    
      
        king_richard_iii()

      


        Return random quote from "Richard III" play.



    


    
      
        romeo_and_juliet()

      


        Return random quote from "Romeo and Juliet" tragedy.



    





      


      
        Functions


        


  
    
      
    
    
      as_you_like_it()



        
          
        

    

  


  

      

          @spec as_you_like_it() :: String.t()


      


Return random quote from "As You Like It" comedy.
Examples
iex> Faker.Lorem.Shakespeare.En.as_you_like_it()
"For ever and a day."
iex> Faker.Lorem.Shakespeare.En.as_you_like_it()
"Can one desire too much of a good thing?."
iex> Faker.Lorem.Shakespeare.En.as_you_like_it()
"How bitter a thing it is to look into happiness through another man's eyes!"
iex> Faker.Lorem.Shakespeare.En.as_you_like_it()
"All the world's a stage, and all the men and women merely players. They have their exits and their entrances; And one man in his time plays many parts."

  



  
    
      
    
    
      hamlet()



        
          
        

    

  


  

      

          @spec hamlet() :: String.t()


      


Return random quote from "The Tragedy of Hamlet, Prince of Denmark" tragedy.
Examples
iex> Faker.Lorem.Shakespeare.En.hamlet()
"Brevity is the soul of wit."
iex> Faker.Lorem.Shakespeare.En.hamlet()
"And it must follow, as the night the day, thou canst not then be false to any man."
iex> Faker.Lorem.Shakespeare.En.hamlet()
"Do you think I am easier to be played on than a pipe?"
iex> Faker.Lorem.Shakespeare.En.hamlet()
"Rich gifts wax poor when givers prove unkind."

  



  
    
      
    
    
      king_richard_iii()



        
          
        

    

  


  

      

          @spec king_richard_iii() :: String.t()


      


Return random quote from "Richard III" play.
Examples
iex> Faker.Lorem.Shakespeare.En.king_richard_iii()
"The king's name is a tower of strength."
iex> Faker.Lorem.Shakespeare.En.king_richard_iii()
"A horse! a horse! my kingdom for a horse!"
iex> Faker.Lorem.Shakespeare.En.king_richard_iii()
"So wise so young, they say, do never live long."
iex> Faker.Lorem.Shakespeare.En.king_richard_iii()
"Now is the winter of our discontent."

  



  
    
      
    
    
      romeo_and_juliet()



        
          
        

    

  


  

      

          @spec romeo_and_juliet() :: String.t()


      


Return random quote from "Romeo and Juliet" tragedy.
Examples
iex> Faker.Lorem.Shakespeare.En.romeo_and_juliet()
"What's in a name? That which we call a rose by any other name would smell as sweet."
iex> Faker.Lorem.Shakespeare.En.romeo_and_juliet()
"For you and I are past our dancing days."
iex> Faker.Lorem.Shakespeare.En.romeo_and_juliet()
"For you and I are past our dancing days."
iex> Faker.Lorem.Shakespeare.En.romeo_and_juliet()
"For you and I are past our dancing days."

  


        

      


  

    
Faker.Lorem.Shakespeare.Ru 
    



      
Random quotes from William Shakespeare's plays, sonnets and poems in Russian.

      


      
        Summary


  
    Functions
  


    
      
        as_you_like_it()

      


        Return random quote from "As You Like It" comedy.



    


    
      
        hamlet()

      


        Return random quote from "The Tragedy of Hamlet, Prince of Denmark" tragedy.



    


    
      
        king_richard_iii()

      


        Return random quote from "Richard III" play.



    


    
      
        romeo_and_juliet()

      


        Return random quote from "Romeo and Juliet" tragedy.



    





      


      
        Functions


        


  
    
      
    
    
      as_you_like_it()



        
          
        

    

  


  

      

          @spec as_you_like_it() :: String.t()


      


Return random quote from "As You Like It" comedy.
Examples
iex> Faker.Lorem.Shakespeare.Ru.as_you_like_it()
"Дурак думает, что он умен; умный же знает, что глуп он."
iex> Faker.Lorem.Shakespeare.Ru.as_you_like_it()
"Весь мир — театр. В нем женщины, мужчины — все актеры. У них свои есть выходы, уходы, и каждый не одну играет роль."
iex> Faker.Lorem.Shakespeare.Ru.as_you_like_it()
"Весь мир — театр. В нем женщины, мужчины — все актеры. У них свои есть выходы, уходы, и каждый не одну играет роль."
iex> Faker.Lorem.Shakespeare.Ru.as_you_like_it()
"Дурак думает, что он умен; умный же знает, что глуп он."

  



  
    
      
    
    
      hamlet()



        
          
        

    

  


  

      

          @spec hamlet() :: String.t()


      


Return random quote from "The Tragedy of Hamlet, Prince of Denmark" tragedy.
Examples
iex> Faker.Lorem.Shakespeare.Ru.hamlet()
"И дальше тишина."
iex> Faker.Lorem.Shakespeare.Ru.hamlet()
"Быть иль не быть, вот в чём вопрос."
iex> Faker.Lorem.Shakespeare.Ru.hamlet()
"Быть иль не быть, вот в чём вопрос."
iex> Faker.Lorem.Shakespeare.Ru.hamlet()
"Быть иль не быть, вот в чём вопрос."

  



  
    
      
    
    
      king_richard_iii()



        
          
        

    

  


  

      

          @spec king_richard_iii() :: String.t()


      


Return random quote from "Richard III" play.
Examples
iex> Faker.Lorem.Shakespeare.Ru.king_richard_iii()
"Коня, коня! Престол мой за коня!"
iex> Faker.Lorem.Shakespeare.Ru.king_richard_iii()
"Нет, не купить любви ценой злодейств!"
iex> Faker.Lorem.Shakespeare.Ru.king_richard_iii()
"Нет, не купить любви ценой злодейств!"
iex> Faker.Lorem.Shakespeare.Ru.king_richard_iii()
"Коня, коня! Престол мой за коня!"

  



  
    
      
    
    
      romeo_and_juliet()



        
          
        

    

  


  

      

          @spec romeo_and_juliet() :: String.t()


      


Return random quote from "Romeo and Juliet" tragedy.
Examples
iex> Faker.Lorem.Shakespeare.Ru.romeo_and_juliet()
"Нет повести печальнее на свете, чем повесть о Ромео и Джульетте."
iex> Faker.Lorem.Shakespeare.Ru.romeo_and_juliet()
"Картина требует красивой рамы, и золотое содержанье книг, нуждается в обложках золотых."
iex> Faker.Lorem.Shakespeare.Ru.romeo_and_juliet()
"Чем лучше цель, тем целимся мы метче."
iex> Faker.Lorem.Shakespeare.Ru.romeo_and_juliet()
"В минуты отчаянья сойдёт за вечность час..."

  


        

      


  

    
Faker.Markdown 
    



      
Functions for generating random markdown

      


      
        Summary


  
    Functions
  


    
      
        block_code()

      


        Returns random inline code



    


    
      
        emphasis()

      


        Returns a random sentence with random emphasis word



    


    
      
        headers()

      


        Returns a random markdown header



    


    
      
        inline_code()

      


        Returns random inline code



    


    
      
        markdown()

      


        Returns random markdown



    


    
      
        ordered_list()

      


        Returns a random ordered list



    


    
      
        table()

      


        Returns random markdown table



    


    
      
        unordered_list()

      


        Returns a random unordered list



    





      


      
        Functions


        


  
    
      
    
    
      block_code()



        
          
        

    

  


  

      

          @spec block_code() :: String.t()


      


Returns random inline code
Examples
iex> Faker.Markdown.block_code()
"```elixir\nDeleniti consequatur et qui vitae et.\n```"
iex> Faker.Markdown.block_code()
"```elixir\nAut expedita cumque est necessitatibus beatae ex sunt!\n```"
iex> Faker.Markdown.block_code()
"```ruby\nAsperiores qui vitae animi et id et vitae vitae.\n```"
iex> Faker.Markdown.block_code()
"```go\nQuisquam ab harum ipsa sed veritatis numquam.\n```"

  



  
    
      
    
    
      emphasis()



        
          
        

    

  


  

      

          @spec emphasis() :: String.t()


      


Returns a random sentence with random emphasis word
Examples
iex> Faker.Markdown.emphasis()
"Deleniti consequatur et qui vitae et. Sit _aut_ expedita cumque est necessitatibus beatae ex sunt!"
iex> Faker.Markdown.emphasis()
"Vitae animi *et* id et vitae! Quisquam corporis quisquam ab harum!"
iex> Faker.Markdown.emphasis()
"Ut aut inventore eius! Aut doloribus qui officia vel quaerat. Et perspiciatis rerum nam repellendus inventore nihil _dicta_ ipsum."
iex> Faker.Markdown.emphasis()
"Quisquam sed odio accusamus et vel error non impedit tempora. _Qui_ fugit cupiditate fuga ab consectetur harum earum! Nobis provident quisquam modi accusantium eligendi numquam!"

  



  
    
      
    
    
      headers()



        
          
        

    

  


  

      

          @spec headers() :: String.t()


      


Returns a random markdown header
Examples
iex> Faker.Markdown.headers()
"###### Aliquam"
iex> Faker.Markdown.headers()
"### Sint"
iex> Faker.Markdown.headers()
"# Consequatur"
iex> Faker.Markdown.headers()
"### Qui"
iex> Faker.Markdown.headers()
"# Et"

  



  
    
      
    
    
      inline_code()



        
          
        

    

  


  

      

          @spec inline_code() :: String.t()


      


Returns random inline code
Examples
iex> Faker.Markdown.inline_code()
"`Sint deleniti consequatur et qui vitae et quibusdam et sit.`"
iex> Faker.Markdown.inline_code()
"`Cumque est necessitatibus beatae ex sunt soluta?`"
iex> Faker.Markdown.inline_code()
"`Asperiores qui vitae animi et id et vitae vitae.`"
iex> Faker.Markdown.inline_code()
"`Corporis quisquam ab harum ipsa sed veritatis.`"

  



  
    
      
    
    
      markdown()



        
          
        

    

  


  

      

          @spec markdown() :: String.t()


      


Returns random markdown
Examples
iex> Faker.Markdown.markdown()
"## Aut\n\n```ruby\nBeatae ex sunt soluta possimus soluta asperiores qui vitae animi.\n```\n\n`Et vitae vitae ut quisquam corporis quisquam ab harum ipsa.`\n\n* Maxime ut aut inventore eius rerum beatae?\n* Qui officia vel quaerat expedita.\n* Perspiciatis rerum nam repellendus inventore nihil.\n* Sequi ducimus qui voluptates magni quisquam sed odio.\n* Vel error non impedit tempora minus.\n\nfugit | cupiditate | fuga | ab\n---- | ---- | ---- | ----\nconsectetur | harum | earum | possimus\ntotam | nobis | provident | quisquam\nmodi | accusantium | eligendi | numquam"
iex> Faker.Markdown.markdown()
"Odit dicta dolores at ut delectus magni atque eos? Labore voluptate laudantium ~qui.~ Voluptatibus sed et enim ullam?\n\n1. Repellat et praesentium quia sed nemo minus ea!\n2. Cumque nihil similique repudiandae corrupti!\n3. Similique accusamus suscipit perspiciatis cum.\n4. Dolore et ut earum possimus eos reprehenderit cupiditate omnis et.\n5. Sit delectus possimus quo et est culpa eum ex?\n6. Aut aut aut quisquam?\n7. Tenetur alias est provident esse dicta ea illo consequatur maiores?"
iex> Faker.Markdown.markdown()
"* Porro est id maxime dolorum animi.\n* Deserunt ipsa consequuntur eveniet asperiores.\n* Quia numquam voluptas vitae repellat tempore.\n* Harum voluptas harum modi omnis quam dolor a aliquam officiis?\n* Neque voluptas consequatur sed cupiditate dolorum pariatur et.\n* Aut voluptatem natus amet eius eos non dolorum.\n* Pariatur ex illo aliquam rerum ab voluptatem exercitationem nobis enim.\n* Eos corporis unde ex enim dolore ut consequuntur.\n* Dicta eius totam nobis est a eveniet ab magni.\n* Consequatur unde dolorem et nihil laudantium ea veniam necessitatibus."
iex> Faker.Markdown.markdown()
"1. Repellat qui repudiandae quia cumque excepturi laudantium accusantium!\n2. Sunt non consequatur molestiae laboriosam sit aperiam.\n3. Voluptatem est beatae delectus minus qui molestiae dolorem aut.\n4. Iure enim sapiente quia voluptas esse!\n\n```go\nVoluptas ullam ratione et esse optio qui ut sed dignissimos!\n```\n\nsaepe | a | illo\n---- | ---- | ----\nut | eos | aliquid\nquisquam | omnis | magni\nconsequuntur | molestiae | expedita\n\n* Ducimus est nulla repellat reiciendis est est veritatis.\n* Quaerat assumenda ut reiciendis eaque in!\n* Aliquam quis sapiente facere?\n* Nihil suscipit pariatur qui."

  



  
    
      
    
    
      ordered_list()



        
          
        

    

  


  

      

          @spec ordered_list() :: String.t()


      


Returns a random ordered list
Examples
iex> Faker.Markdown.ordered_list()
"1. Deleniti consequatur et qui vitae et."
iex> Faker.Markdown.ordered_list()
"1. Aut expedita cumque est necessitatibus beatae ex sunt!"
iex> Faker.Markdown.ordered_list()
"1. Asperiores qui vitae animi et id et vitae vitae.\n2. Corporis quisquam ab harum ipsa sed veritatis.\n3. Ut aut inventore eius!\n4. Aut doloribus qui officia vel quaerat.\n5. Et perspiciatis rerum nam repellendus inventore nihil dicta ipsum.\n6. Qui voluptates magni quisquam sed odio accusamus et.\n7. Non impedit tempora minus voluptatem qui fugit?\n8. Ab consectetur harum earum possimus."
iex> Faker.Markdown.ordered_list()
"1. Quisquam modi accusantium eligendi numquam.\n2. Quod blanditiis est non id quibusdam qui omnis alias!\n3. Dicta dolores at ut delectus magni atque eos beatae nulla.\n4. Laudantium qui dolorem pariatur voluptatibus sed et enim?"

  



  
    
      
    
    
      table()



        
          
        

    

  


  

      

          @spec table() :: String.t()


      


Returns random markdown table
Examples
iex> Faker.Markdown.table()
"sint | deleniti | consequatur\n---- | ---- | ----\net | qui | vitae\net | quibusdam | et\nsit | aut | expedita\ncumque | est | necessitatibus\nbeatae | ex | sunt"
iex> Faker.Markdown.table()
"soluta | asperiores\n---- | ----\nqui | vitae\nanimi | et\nid | et\nvitae | vitae\nut | quisquam\ncorporis | quisquam"
iex> Faker.Markdown.table()
"ipsa | sed | veritatis | numquam | maxime\n---- | ---- | ---- | ---- | ----\nut | aut | inventore | eius | rerum\nbeatae | aut | doloribus | qui | officia\nvel | quaerat | expedita | ut | et\nperspiciatis | rerum | nam | repellendus | inventore"
iex> Faker.Markdown.table()
"ipsum | sequi | ducimus | qui | voluptates\n---- | ---- | ---- | ---- | ----\nmagni | quisquam | sed | odio | accusamus\net | vel | error | non | impedit\ntempora | minus | voluptatem | qui | fugit"

  



  
    
      
    
    
      unordered_list()



        
          
        

    

  


  

      

          @spec unordered_list() :: String.t()


      


Returns a random unordered list
Examples
iex> Faker.Markdown.unordered_list()
"* Deleniti consequatur et qui vitae et."
iex> Faker.Markdown.unordered_list()
"* Aut expedita cumque est necessitatibus beatae ex sunt!"
iex> Faker.Markdown.unordered_list()
"* Asperiores qui vitae animi et id et vitae vitae.\n* Corporis quisquam ab harum ipsa sed veritatis.\n* Ut aut inventore eius!\n* Aut doloribus qui officia vel quaerat.\n* Et perspiciatis rerum nam repellendus inventore nihil dicta ipsum.\n* Qui voluptates magni quisquam sed odio accusamus et.\n* Non impedit tempora minus voluptatem qui fugit?\n* Ab consectetur harum earum possimus."
iex> Faker.Markdown.unordered_list()
"* Quisquam modi accusantium eligendi numquam.\n* Quod blanditiis est non id quibusdam qui omnis alias!\n* Dicta dolores at ut delectus magni atque eos beatae nulla.\n* Laudantium qui dolorem pariatur voluptatibus sed et enim?"

  


        

      


  

    
Faker.Name 
    



      
Deprecated. Faker.Name will be removed in 1.0.0. Please use Faker.Person instead.

      


      
        Summary


  
    Functions
  


    
      
        first_name()

          deprecated

      


        Returns a random first name



    


    
      
        last_name()

          deprecated

      


        Returns a random last name



    


    
      
        name()

          deprecated

      


        Returns a random complete name



    


    
      
        prefix()

          deprecated

      


        Returns a random name related prefix



    


    
      
        suffix()

          deprecated

      


        Returns a random name related suffix



    


    
      
        title()

          deprecated

      


        Returns a random name related title



    





      


      
        Functions


        


  
    
      
    
    
      first_name()



        
          
        

    

  


    
      This function is deprecated. Use Faker.Person.first_name/0 instead..
    


  

      

          @spec first_name() :: String.t()


      


Returns a random first name
Examples
iex> Faker.Name.first_name()
"Joany"
iex> Faker.Name.first_name()
"Elizabeth"
iex> Faker.Name.first_name()
"Abe"
iex> Faker.Name.first_name()
"Ozella"

  



  
    
      
    
    
      last_name()



        
          
        

    

  


    
      This function is deprecated. Use Faker.Person.last_name/0 instead..
    


  

      

          @spec last_name() :: String.t()


      


Returns a random last name
Examples
iex> Faker.Name.last_name()
"Blick"
iex> Faker.Name.last_name()
"Hayes"
iex> Faker.Name.last_name()
"Schumm"
iex> Faker.Name.last_name()
"Rolfson"

  



  
    
      
    
    
      name()



        
          
        

    

  


    
      This function is deprecated. Use Faker.Person.name/0 instead..
    


  

      

          @spec name() :: String.t()


      


Returns a random complete name
Examples
iex> Faker.Name.name()
"Mrs. Abe Rolfson MD"
iex> Faker.Name.name()
"Conor Padberg"
iex> Faker.Name.name()
"Mr. Bianka Ryan"
iex> Faker.Name.name()
"Ally Rau MD"

  



  
    
      
    
    
      prefix()



        
          
        

    

  


    
      This function is deprecated. Use Faker.Person.prefix/0 instead..
    


  

      

          @spec prefix() :: String.t()


      


Returns a random name related prefix
Examples
iex> Faker.Name.prefix()
"Mr."
iex> Faker.Name.prefix()
"Mrs."
iex> Faker.Name.prefix()
"Mr."
iex> Faker.Name.prefix()
"Dr."

  



  
    
      
    
    
      suffix()



        
          
        

    

  


    
      This function is deprecated. Use Faker.Person.suffix/0 instead..
    


  

      

          @spec suffix() :: String.t()


      


Returns a random name related suffix
Examples
iex> Faker.Name.suffix()
"II"
iex> Faker.Name.suffix()
"V"
iex> Faker.Name.suffix()
"V"
iex> Faker.Name.suffix()
"V"

  



  
    
      
    
    
      title()



        
          
        

    

  


    
      This function is deprecated. Use Faker.Person.title/0 instead..
    


  

      

          @spec title() :: String.t()


      


Returns a random name related title
Examples
iex> Faker.Name.title()
"Dynamic Identity Administrator"
iex> Faker.Name.title()
"Product Communications Technician"
iex> Faker.Name.title()
"Legacy Accountability Architect"
iex> Faker.Name.title()
"Customer Data Representative"

  


        

      


  

    
Faker.Nato 
    



      
Functions for generating NATO alphabet data

      


      
        Summary


  
    Functions
  


    
      
        callsign()

      


        Returns a random NATO call sign of the form [alpha]-[alpha]-[digit]



    


    
      
        digit_code_word()

      


        Returns a random digit NATO code



    


    
      
        format(str)

      


        Formats a string using the NATO alphabet.



    


    
      
        letter_code_word()

      


        Returns a random letter NATO code



    


    
      
        stop_code_word()

      


        Returns the NATO stop code



    





      


      
        Functions


        


  
    
      
    
    
      callsign()



        
          
        

    

  


  

      

          @spec callsign() :: String.t()


      


Returns a random NATO call sign of the form [alpha]-[alpha]-[digit]
Examples
iex> Faker.Nato.callsign()
"ECHO-LIMA-SIX"
iex> Faker.Nato.callsign()
"CHARLIE-ECHO-SEVEN"
iex> Faker.Nato.callsign()
"SIERRA-GOLF-TWO"
iex> Faker.Nato.callsign()
"INDIA-WHISKEY-FOUR"

  



  
    
      
    
    
      digit_code_word()



        
          
        

    

  


  

      

          @spec digit_code_word() :: String.t()


      


Returns a random digit NATO code
Examples
iex> Faker.Nato.digit_code_word()
"ONE"
iex> Faker.Nato.digit_code_word()
"TWO"
iex> Faker.Nato.digit_code_word()
"SIX"
iex> Faker.Nato.digit_code_word()
"FIVE"

  



  
    
      
    
    
      format(str)



        
          
        

    

  


  

      

          @spec format(String.t()) :: String.t()


      


Formats a string using the NATO alphabet.
It replaces "#" to a random NATO digit, "?" to random NATO letter
and "." to the stop code.
Examples
iex> Faker.Nato.format("#-?-#-.")
"ONE-LIMA-SIX-STOP"
iex> Faker.Nato.format("#-?-#-.")
"FIVE-ECHO-SEVEN-STOP"
iex> Faker.Nato.format("#-?-#-.")
"FIVE-GOLF-TWO-STOP"
iex> Faker.Nato.format("#-?-#-.")
"ONE-WHISKEY-FOUR-STOP"

  



  
    
      
    
    
      letter_code_word()



        
          
        

    

  


  

      

          @spec letter_code_word() :: String.t()


      


Returns a random letter NATO code
Examples
iex> Faker.Nato.letter_code_word()
"ECHO"
iex> Faker.Nato.letter_code_word()
"LIMA"
iex> Faker.Nato.letter_code_word()
"ROMEO"
iex> Faker.Nato.letter_code_word()
"CHARLIE"

  



  
    
      
    
    
      stop_code_word()



        
          
        

    

  


  

      

          @spec stop_code_word() :: String.t()


      


Returns the NATO stop code
Examples
iex> Faker.Nato.stop_code_word()
"STOP"

  


        

      


  

    
Faker.Person 
    



      
Functions for generating names for a person.

      


      
        Summary


  
    Functions
  


    
      
        first_name()

      


        Returns a random first name



    


    
      
        last_name()

      


        Returns a random last name



    


    
      
        name()

      


        Returns a random complete name



    


    
      
        prefix()

      


        Returns a random name related prefix



    


    
      
        suffix()

      


        Returns a random name related suffix



    


    
      
        title()

      


        Returns a random name related title



    





      


      
        Functions


        


  
    
      
    
    
      first_name()



        
          
        

    

  


  

      

          @spec first_name() :: String.t()


      


Returns a random first name
Examples
iex> Faker.Person.first_name()
"Joany"
iex> Faker.Person.first_name()
"Elizabeth"
iex> Faker.Person.first_name()
"Abe"
iex> Faker.Person.first_name()
"Ozella"

  



  
    
      
    
    
      last_name()



        
          
        

    

  


  

      

          @spec last_name() :: String.t()


      


Returns a random last name
Examples
iex> Faker.Person.last_name()
"Blick"
iex> Faker.Person.last_name()
"Hayes"
iex> Faker.Person.last_name()
"Schumm"
iex> Faker.Person.last_name()
"Rolfson"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random complete name
Examples
iex> Faker.Person.name()
"Mrs. Abe Rolfson MD"
iex> Faker.Person.name()
"Conor Padberg"
iex> Faker.Person.name()
"Mr. Bianka Ryan"
iex> Faker.Person.name()
"Ally Rau MD"

  



  
    
      
    
    
      prefix()



        
          
        

    

  


  

      

          @spec prefix() :: String.t()


      


Returns a random name related prefix
Examples
iex> Faker.Person.prefix()
"Mr."
iex> Faker.Person.prefix()
"Mrs."
iex> Faker.Person.prefix()
"Mr."
iex> Faker.Person.prefix()
"Dr."

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random name related suffix
Examples
iex> Faker.Person.suffix()
"II"
iex> Faker.Person.suffix()
"V"
iex> Faker.Person.suffix()
"V"
iex> Faker.Person.suffix()
"V"

  



  
    
      
    
    
      title()



        
          
        

    

  


  

      

          @spec title() :: String.t()


      


Returns a random name related title
Examples
iex> Faker.Person.title()
"Dynamic Identity Administrator"
iex> Faker.Person.title()
"Product Communications Technician"
iex> Faker.Person.title()
"Legacy Accountability Architect"
iex> Faker.Person.title()
"Customer Data Representative"

  


        

      


  

    
Faker.Person.En 
    



      
Functions for name data in English

      


      
        Summary


  
    Functions
  


    
      
        first_name()

      


        Returns a random first name



    


    
      
        last_name()

      


        Returns a random last name



    


    
      
        name()

      


        Returns a complete name (may include a suffix/prefix or both)



    


    
      
        prefix()

      


        Returns a random prefix



    


    
      
        suffix()

      


        Returns a random suffix



    


    
      
        title()

      


        Returns a random complete job title



    


    
      
        title_descriptor()

      


        Returns a random job title descriptor



    


    
      
        title_job()

      


        Returns a random job title name



    


    
      
        title_level()

      


        Returns a random job title level



    





      


      
        Functions


        


  
    
      
    
    
      first_name()



        
          
        

    

  


  

      

          @spec first_name() :: String.t()


      


Returns a random first name
Examples
iex> Faker.Person.En.first_name()
"Joany"
iex> Faker.Person.En.first_name()
"Elizabeth"
iex> Faker.Person.En.first_name()
"Abe"
iex> Faker.Person.En.first_name()
"Ozella"

  



  
    
      
    
    
      last_name()



        
          
        

    

  


  

      

          @spec last_name() :: String.t()


      


Returns a random last name
Examples
iex> Faker.Person.En.last_name()
"Blick"
iex> Faker.Person.En.last_name()
"Hayes"
iex> Faker.Person.En.last_name()
"Schumm"
iex> Faker.Person.En.last_name()
"Rolfson"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a complete name (may include a suffix/prefix or both)
Examples
iex> Faker.Person.En.name()
"Mrs. Abe Rolfson MD"
iex> Faker.Person.En.name()
"Conor Padberg"
iex> Faker.Person.En.name()
"Mr. Bianka Ryan"
iex> Faker.Person.En.name()
"Ally Rau MD"

  



  
    
      
    
    
      prefix()



        
          
        

    

  


  

      

          @spec prefix() :: String.t()


      


Returns a random prefix
Examples
iex> Faker.Person.En.prefix()
"Mr."
iex> Faker.Person.En.prefix()
"Mrs."
iex> Faker.Person.En.prefix()
"Mr."
iex> Faker.Person.En.prefix()
"Dr."

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random suffix
Examples
iex> Faker.Person.En.suffix()
"II"
iex> Faker.Person.En.suffix()
"V"
iex> Faker.Person.En.suffix()
"V"
iex> Faker.Person.En.suffix()
"V"

  



  
    
      
    
    
      title()



        
          
        

    

  


  

      

          @spec title() :: String.t()


      


Returns a random complete job title
Examples
iex> Faker.Person.En.title()
"Dynamic Identity Administrator"
iex> Faker.Person.En.title()
"Product Communications Technician"
iex> Faker.Person.En.title()
"Legacy Accountability Architect"
iex> Faker.Person.En.title()
"Customer Data Representative"

  



  
    
      
    
    
      title_descriptor()



        
          
        

    

  


  

      

          @spec title_descriptor() :: String.t()


      


Returns a random job title descriptor
Examples
iex> Faker.Person.En.title_descriptor()
"Dynamic"
iex> Faker.Person.En.title_descriptor()
"Forward"
iex> Faker.Person.En.title_descriptor()
"Forward"
iex> Faker.Person.En.title_descriptor()
"Product"

  



  
    
      
    
    
      title_job()



        
          
        

    

  


  

      

          @spec title_job() :: String.t()


      


Returns a random job title name
Examples
iex> Faker.Person.En.title_job()
"Administrator"
iex> Faker.Person.En.title_job()
"Associate"
iex> Faker.Person.En.title_job()
"Administrator"
iex> Faker.Person.En.title_job()
"Officer"

  



  
    
      
    
    
      title_level()



        
          
        

    

  


  

      

          @spec title_level() :: String.t()


      


Returns a random job title level
Examples
iex> Faker.Person.En.title_level()
"Metrics"
iex> Faker.Person.En.title_level()
"Identity"
iex> Faker.Person.En.title_level()
"Assurance"
iex> Faker.Person.En.title_level()
"Intranet"

  


        

      


  

    
Faker.Person.Es 
    



      
Functions for name data in Spanish

      


      
        Summary


  
    Functions
  


    
      
        first_name()

      


        Returns a random first name



    


    
      
        last_name()

      


        Returns a random last name



    


    
      
        name()

      


        Returns a complete name (may include a suffix/prefix or both)



    


    
      
        prefix()

      


        Returns a random prefix



    


    
      
        suffix()

      


        Returns a random suffix



    





      


      
        Functions


        


  
    
      
    
    
      first_name()



        
          
        

    

  


  

      

          @spec first_name() :: String.t()


      


Returns a random first name
Examples
iex> Faker.Person.Es.first_name()
"Jorge"
iex> Faker.Person.Es.first_name()
"Guillermina"
iex> Faker.Person.Es.first_name()
"Daniela"
iex> Faker.Person.Es.first_name()
"Armando"

  



  
    
      
    
    
      last_name()



        
          
        

    

  


  

      

          @spec last_name() :: String.t()


      


Returns a random last name
Examples
iex> Faker.Person.Es.last_name()
"Raya"
iex> Faker.Person.Es.last_name()
"Cervantes"
iex> Faker.Person.Es.last_name()
"Maya"
iex> Faker.Person.Es.last_name()
"Agosto"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a complete name (may include a suffix/prefix or both)
Examples
iex> Faker.Person.Es.name()
"Sta. Daniela Agosto MD"
iex> Faker.Person.Es.name()
"Alfonso Menéndez"
iex> Faker.Person.Es.name()
"Sr. Francisco Jaimes"
iex> Faker.Person.Es.name()
"Manuel Lucio MD"

  



  
    
      
    
    
      prefix()



        
          
        

    

  


  

      

          @spec prefix() :: String.t()


      


Returns a random prefix
Examples
iex> Faker.Person.Es.prefix()
"Sr."
iex> Faker.Person.Es.prefix()
"Sta."
iex> Faker.Person.Es.prefix()
"Sr."
iex> Faker.Person.Es.prefix()
"Sta."

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random suffix
Examples
iex> Faker.Person.Es.suffix()
"II"
iex> Faker.Person.Es.suffix()
"V"
iex> Faker.Person.Es.suffix()
"V"
iex> Faker.Person.Es.suffix()
"V"

  


        

      


  

    
Faker.Person.Fr 
    



      
Functions for name data in French

      


      
        Summary


  
    Functions
  


    
      
        first_name()

      


        Returns a random first name



    


    
      
        last_name()

      


        Returns a random last name



    


    
      
        name()

      


        Returns a complete name (may include a suffix/prefix or both)



    


    
      
        prefix()

      


        Returns a random prefix



    


    
      
        suffix()

      


        Returns a random suffix



    





      


      
        Functions


        


  
    
      
    
    
      first_name()



        
          
        

    

  


  

      

          @spec first_name() :: String.t()


      


Returns a random first name
Examples
iex> Faker.Person.Fr.first_name()
"Damien"
iex> Faker.Person.Fr.first_name()
"Madeleine"
iex> Faker.Person.Fr.first_name()
"Marcel"
iex> Faker.Person.Fr.first_name()
"Fabrice"

  



  
    
      
    
    
      last_name()



        
          
        

    

  


  

      

          @spec last_name() :: String.t()


      


Returns a random last name
  ## Examples
  iex> Faker.Person.Fr.last_name()
  "Bassett"
  iex> Faker.Person.Fr.last_name()
  "Duplantier"
  iex> Faker.Person.Fr.last_name()
  "Boivin"
  iex> Faker.Person.Fr.last_name()
  "Duplantier"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a complete name (may include a suffix/prefix or both)
Examples
iex> Faker.Person.Fr.name()
"Madame Marcel Duplantier MD"
iex> Faker.Person.Fr.name()
"Quentin Garnier"
iex> Faker.Person.Fr.name()
"Docteur Camille Fontaine"
iex> Faker.Person.Fr.name()
"Serge Bassett V"

  



  
    
      
    
    
      prefix()



        
          
        

    

  


  

      

          @spec prefix() :: String.t()


      


Returns a random prefix
Examples
iex> Faker.Person.Fr.prefix()
"Docteur"
iex> Faker.Person.Fr.prefix()
"Madame"
iex> Faker.Person.Fr.prefix()
"Docteur"
iex> Faker.Person.Fr.prefix()
"Professeur"

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random suffix
Examples
iex> Faker.Person.Fr.suffix()
"V"
iex> Faker.Person.Fr.suffix()
"I"
iex> Faker.Person.Fr.suffix()
"PhD"
iex> Faker.Person.Fr.suffix()
"MD"

  


        

      


  

    
Faker.Person.Hy 
    



      
Functions for generating name related data in Armenian

      


      
        Summary


  
    Functions
  


    
      
        first_name()

      


        Returns a random first name.



    


    
      
        last_name()

      


        Returns a random last name.



    


    
      
        name()

      


        Returns a complete name.



    


    
      
        prefix()

      


        Returns a random prefix.



    


    
      
        suffix()

      


        Returns a random suffix.



    


    
      
        title()

      


        Returns a random complete job title.



    


    
      
        title_descriptor()

      


        Returns a random job title descriptor.



    


    
      
        title_job()

      


        Returns a random job title.



    


    
      
        title_level()

      


        Returns a random job title level.



    





      


      
        Functions


        


  
    
      
    
    
      first_name()



        
          
        

    

  


  

      

          @spec first_name() :: String.t()


      


Returns a random first name.
Examples
iex> Faker.Person.Hy.first_name()
"Սյուզաննա"
iex> Faker.Person.Hy.first_name()
"Վարուժան"
iex> Faker.Person.Hy.first_name()
"Բարբարա"
iex> Faker.Person.Hy.first_name()
"Սոֆյա"

  



  
    
      
    
    
      last_name()



        
          
        

    

  


  

      

          @spec last_name() :: String.t()


      


Returns a random last name.
Examples
iex> Faker.Person.Hy.last_name()
"Թովուլջյան"
iex> Faker.Person.Hy.last_name()
"Բաղդասարյան"
iex> Faker.Person.Hy.last_name()
"Աթամյան"
iex> Faker.Person.Hy.last_name()
"Բեկզադով"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a complete name.
Examples
iex> Faker.Person.Hy.name()
"Սյուզաննա Բաղդասարյան"
iex> Faker.Person.Hy.name()
"Բարբարա Բեկզադով"
iex> Faker.Person.Hy.name()
"Վահրամ Կարագյան"
iex> Faker.Person.Hy.name()
"Բեռնար Վարպետյան"

  



  
    
      
    
    
      prefix()



        
          
        

    

  


  

      

          @spec prefix() :: String.t()


      


Returns a random prefix.
Examples
iex> Faker.Person.Hy.prefix()
"օրիորդ"
iex> Faker.Person.Hy.prefix()
"տիկին"
iex> Faker.Person.Hy.prefix()
"դոկտոր"
iex> Faker.Person.Hy.prefix()
"պարոն"

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random suffix.
Examples
iex> Faker.Person.Hy.suffix()
"կրտսեր"
iex> Faker.Person.Hy.suffix()
"ավագ"
iex> Faker.Person.Hy.suffix()
"ավագ"
iex> Faker.Person.Hy.suffix()
"կրտսեր"

  



  
    
      
    
    
      title()



        
          
        

    

  


  

      

          @spec title() :: String.t()


      


Returns a random complete job title.
Examples
iex> Faker.Person.Hy.title()
"մարկետինգի առաջատար խորհրդատու"
iex> Faker.Person.Hy.title()
"առևտրի կրտսեր համակարգող"
iex> Faker.Person.Hy.title()
"համայնքային ծառայությունների ավագ պլանավորող"
iex> Faker.Person.Hy.title()
"մարկետինգի ավագ ինժեներ"

  



  
    
      
    
    
      title_descriptor()



        
          
        

    

  


  

      

          @spec title_descriptor() :: String.t()


      


Returns a random job title descriptor.
Examples
iex> Faker.Person.Hy.title_descriptor()
"մարկետինգի"
iex> Faker.Person.Hy.title_descriptor()
"արտադրության"
iex> Faker.Person.Hy.title_descriptor()
"մարկետինգի"
iex> Faker.Person.Hy.title_descriptor()
"առևտրի"

  



  
    
      
    
    
      title_job()



        
          
        

    

  


  

      

          @spec title_job() :: String.t()


      


Returns a random job title.
Examples
iex> Faker.Person.Hy.title_job()
"դիզայներ"
iex> Faker.Person.Hy.title_job()
"ղեկավար"
iex> Faker.Person.Hy.title_job()
"խորհրդատու"
iex> Faker.Person.Hy.title_job()
"մասնագետ"

  



  
    
      
    
    
      title_level()



        
          
        

    

  


  

      

          @spec title_level() :: String.t()


      


Returns a random job title level.
Examples
iex> Faker.Person.Hy.title_level()
"ավագ"
iex> Faker.Person.Hy.title_level()
"առաջատար"
iex> Faker.Person.Hy.title_level()
"գլխավոր"
iex> Faker.Person.Hy.title_level()
"կրտսեր"

  


        

      


  

    
Faker.Person.It 
    



      
Functions for name data in Italian

      


      
        Summary


  
    Functions
  


    
      
        first_name()

      


        Returns a random first name



    


    
      
        last_name()

      


        Returns a random last name



    


    
      
        name()

      


        Returns a complete name (may include a suffix/prefix or both)



    


    
      
        prefix()

      


        Returns a random prefix



    





      


      
        Functions


        


  
    
      
    
    
      first_name()



        
          
        

    

  


  

      

          @spec first_name() :: String.t()


      


Returns a random first name
Examples
iex> Faker.Person.It.first_name()
"Azalea"
iex> Faker.Person.It.first_name()
"Dionigi"
iex> Faker.Person.It.first_name()
"Agave"

  



  
    
      
    
    
      last_name()



        
          
        

    

  


  

      

          @spec last_name() :: String.t()


      


Returns a random last name
Examples
iex> Faker.Person.It.last_name()
"Bruno"
iex> Faker.Person.It.last_name()
"Russo"
iex> Faker.Person.It.last_name()
"Serra"
iex> Faker.Person.It.last_name()
"Bianchi"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a complete name (may include a suffix/prefix or both)
Examples
iex> Faker.Person.It.name()
"Sig.ra Agave Bianchi"
iex> Faker.Person.It.name()
"Gennaro Mazza"

  



  
    
      
    
    
      prefix()



        
          
        

    

  


  

      

          @spec prefix() :: String.t()


      


Returns a random prefix
Examples
iex> Faker.Person.It.prefix()
"Sig."
iex> Faker.Person.It.prefix()
"Sig.ra"
iex> Faker.Person.It.prefix()
"Sig."
iex> Faker.Person.It.prefix()
"Avv."

  


        

      


  

    
Faker.Person.PtBr 
    



      
Functions for name data in Brazilian Portuguese

      


      
        Summary


  
    Functions
  


    
      
        first_name()

      


        Returns a random first name



    


    
      
        last_name()

      


        Returns a random last name



    


    
      
        name()

      


        Returns a complete name (may include a suffix/prefix or both)



    


    
      
        prefix()

      


        Returns a random prefix



    


    
      
        suffix()

      


        Returns a random suffix



    





      


      
        Functions


        


  
    
      
    
    
      first_name()



        
          
        

    

  


  

      

          @spec first_name() :: String.t()


      


Returns a random first name
Examples
iex> Faker.Person.PtBr.first_name()
"Augusto"
iex> Faker.Person.PtBr.first_name()
"Amanda"
iex> Faker.Person.PtBr.first_name()
"Kaique"
iex> Faker.Person.PtBr.first_name()
"Antonia"

  



  
    
      
    
    
      last_name()



        
          
        

    

  


  

      

          @spec last_name() :: String.t()


      


Returns a random last name
Examples
iex> Faker.Person.PtBr.last_name()
"Sá"
iex> Faker.Person.PtBr.last_name()
"das Neves"
iex> Faker.Person.PtBr.last_name()
"Castelo"
iex> Faker.Person.PtBr.last_name()
"Mendes"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a complete name (may include a suffix/prefix or both)
Examples
iex> Faker.Person.PtBr.name()
"Sra. Kaique Mendes Neto"
iex> Faker.Person.PtBr.name()
"Roberta Garcês"
iex> Faker.Person.PtBr.name()
"Sr. Vitor Albuquerque"
iex> Faker.Person.PtBr.name()
"Maria Laura da Penha Jr."

  



  
    
      
    
    
      prefix()



        
          
        

    

  


  

      

          @spec prefix() :: String.t()


      


Returns a random prefix
Examples
iex> Faker.Person.PtBr.prefix()
"Sr."
iex> Faker.Person.PtBr.prefix()
"Sra."
iex> Faker.Person.PtBr.prefix()
"Sr."
iex> Faker.Person.PtBr.prefix()
"Dra."

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random suffix
Examples
iex> Faker.Person.PtBr.suffix()
"Jr."
iex> Faker.Person.PtBr.suffix()
"Filho"
iex> Faker.Person.PtBr.suffix()
"Jr."
iex> Faker.Person.PtBr.suffix()
"Filho"

  


        

      


  

    
Faker.Phone.EnGb 
    



      
This follows the rules of
Telephone numbers in the United Kingdom.

      


      
        Summary


  
    Functions
  


    
      
        cell_number()

      


        Returns a random UK mobile phone number



    


    
      
        landline_number()

      


        Returns a random UK landline phone number



    


    
      
        mobile_number()

      


        Returns a random UK mobile phone number



    


    
      
        number()

      


        Returns a random UK phone number



    





      


      
        Functions


        


  
    
      
    
    
      cell_number()



        
          
        

    

  


  

      

          @spec cell_number() :: String.t()


      


Returns a random UK mobile phone number
Examples
iex> Faker.Phone.EnGb.cell_number()
"+447415 426461"
iex> Faker.Phone.EnGb.cell_number()
"07483 297052"
iex> Faker.Phone.EnGb.cell_number()
"+447557 020303"
iex> Faker.Phone.EnGb.cell_number()
"+447609 733760"

  



  
    
      
    
    
      landline_number()



        
          
        

    

  


  

      

          @spec landline_number() :: String.t()


      


Returns a random UK landline phone number
Examples
iex> Faker.Phone.EnGb.landline_number()
"+44331542646"
iex> Faker.Phone.EnGb.landline_number()
"+44560832970"
iex> Faker.Phone.EnGb.landline_number()
"+44023570203"
iex> Faker.Phone.EnGb.landline_number()
"+44703209733"

  



  
    
      
    
    
      mobile_number()



        
          
        

    

  


  

      

          @spec mobile_number() :: String.t()


      


Returns a random UK mobile phone number
Examples
iex> Faker.Phone.EnGb.mobile_number()
"+447415 426461"
iex> Faker.Phone.EnGb.mobile_number()
"07483 297052"
iex> Faker.Phone.EnGb.mobile_number()
"+447557 020303"
iex> Faker.Phone.EnGb.mobile_number()
"+447609 733760"

  



  
    
      
    
    
      number()



        
          
        

    

  


  

      

          @spec number() :: String.t()


      


Returns a random UK phone number
Examples
iex> Faker.Phone.EnGb.number()
"+44054264610"
iex> Faker.Phone.EnGb.number()
"+44562970523"
iex> Faker.Phone.EnGb.number()
"+447502 030320"
iex> Faker.Phone.EnGb.number()
"+447933 760337"

  


        

      


  

    
Faker.Phone.EnUs 
    



      
This follows the rules outlined in the North American Numbering Plan
at https://en.wikipedia.org/wiki/North_American_Numbering_Plan.
The NANP number format may be summarized in the notation NPA-NXX-xxxx:
The allowed ranges for NPA (area code) are: [2–9] for the first digit, and
[0-9] for the second and third digits. The NANP is not assigning area codes
with 9 as the second digit.
The allowed ranges for NXX (central office/exchange) are: [2–9] for the first
digit, and [0–9] for both the second and third digits (however, in geographic
area codes the third digit of the exchange cannot be 1 if the second digit is
also 1).
The allowed ranges for xxxx (subscriber number) are [0–9] for each of the four
digits.

      


      
        Summary


  
    Functions
  


    
      
        area_code()

      


        Returns a random area code



    


    
      
        exchange_code()

      


        Returns a random exchange code



    


    
      
        extension()

      


        See Faker.Phone.EnUs.subscriber_number/0.



    


    
      
        extension(n)

      


        Returns a random extension n digits long



    


    
      
        phone()

      


        Returns a random US phone number



    


    
      
        subscriber_number()

      


    


    
      
        subscriber_number(n)

      


        Returns a random subscriber number n digits long



    





      


      
        Functions


        


  
    
      
    
    
      area_code()



        
          
        

    

  


  

      

          @spec area_code() :: String.t()


      


Returns a random area code
Examples
iex> Faker.Phone.EnUs.area_code()
"825"
iex> Faker.Phone.EnUs.area_code()
"246"
iex> Faker.Phone.EnUs.area_code()
"681"
iex> Faker.Phone.EnUs.area_code()
"683"

  



  
    
      
    
    
      exchange_code()



        
          
        

    

  


  

      

          @spec exchange_code() :: String.t()


      


Returns a random exchange code
Examples
iex> Faker.Phone.EnUs.exchange_code()
"503"
iex> Faker.Phone.EnUs.exchange_code()
"845"
iex> Faker.Phone.EnUs.exchange_code()
"549"
iex> Faker.Phone.EnUs.exchange_code()
"509"

  



  
    
      
    
    
      extension()



        
          
        

    

  


  

See Faker.Phone.EnUs.subscriber_number/0.

  



  
    
      
    
    
      extension(n)



        
          
        

    

  


  

Returns a random extension n digits long
Examples
iex> Faker.Phone.EnUs.extension()
"0154"
iex> Faker.Phone.EnUs.extension()
"2646"
iex> Faker.Phone.EnUs.extension(3)
"108"
iex> Faker.Phone.EnUs.extension(5)
"32970"

  



  
    
      
    
    
      phone()



        
          
        

    

  


  

      

          @spec phone() :: String.t()


      


Returns a random US phone number
Possible returned formats:
  (123) 456-7890
  123/456-7890
  123-456-7890
  123.456.7890
  1234567890
Examples
iex> Faker.Phone.EnUs.phone()
"5528621083"
iex> Faker.Phone.EnUs.phone()
"(730) 552-5702"
iex> Faker.Phone.EnUs.phone()
"652-505-3376"
iex> Faker.Phone.EnUs.phone()
"(377) 347-8109"

  



  
    
      
    
    
      subscriber_number()



        
          
        

    

  


  

      

          @spec subscriber_number() :: String.t()


      



  



  
    
      
    
    
      subscriber_number(n)



        
          
        

    

  


  

      

          @spec subscriber_number(pos_integer()) :: String.t()


      


Returns a random subscriber number n digits long
Examples
iex> Faker.Phone.EnUs.subscriber_number()
"0154"
iex> Faker.Phone.EnUs.subscriber_number()
"2646"
iex> Faker.Phone.EnUs.subscriber_number(2)
"10"
iex> Faker.Phone.EnUs.subscriber_number(5)
"83297"

  


        

      


  

    
Faker.Phone.Hy 
    



      
Functions for generating phone related data in Armenian

      


      
        Summary


  
    Functions
  


    
      
        cell_number()

      


        Returns a random cell phone number.



    


    
      
        landline_number()

      


        Returns a random landline phone number.



    


    
      
        number()

      


        Returns a random phone number.



    





      


      
        Functions


        


  
    
      
    
    
      cell_number()



        
          
        

    

  


  

      

          @spec cell_number() :: String.t()


      


Returns a random cell phone number.
Examples
iex> Faker.Phone.Hy.cell_number()
"15-426461"
iex> Faker.Phone.Hy.cell_number()
"83-297052"
iex> Faker.Phone.Hy.cell_number()
"(57) 020303"
iex> Faker.Phone.Hy.cell_number()
"09.733760"

  



  
    
      
    
    
      landline_number()



        
          
        

    

  


  

      

          @spec landline_number() :: String.t()


      


Returns a random landline phone number.
Examples
iex> Faker.Phone.Hy.landline_number()
"154-26461"
iex> Faker.Phone.Hy.landline_number()
"832-97052"
iex> Faker.Phone.Hy.landline_number()
"(570) 20303"
iex> Faker.Phone.Hy.landline_number()
"097.33760"

  



  
    
      
    
    
      number()



        
          
        

    

  


  

      

          @spec number() :: String.t()


      


Returns a random phone number.
Examples
iex> Faker.Phone.Hy.number()
"10.542646"
iex> Faker.Phone.Hy.number()
"83-297052"
iex> Faker.Phone.Hy.number()
"(70) 203032"
iex> Faker.Phone.Hy.number()
"(733) 76033"

  


        

      


  

    
Faker.Phone.PtBr 
    



      
Function to generate Brazilian phone numbers.

      


      
        Summary


  
    Functions
  


    
      
        base_template_number()

      


    


    
      
        generate_region_code()

      


        Pick a random region code from list



    


    
      
        number_with_region(number)

      


        Replace 'xx' for a random region number picked.



    


    
      
        phone()

      


        Returns a random phone number.



    


    
      
        region_code()

      


    





      


      
        Functions


        


  
    
      
    
    
      base_template_number()



        
          
        

    

  


  


  



  
    
      
    
    
      generate_region_code()



        
          
        

    

  


  

      

          @spec generate_region_code() :: binary()


      


Pick a random region code from list
Examples
iex> Faker.Phone.PtBr.generate_region_code()
"92"
iex> Faker.Phone.PtBr.generate_region_code()
"31"
iex> Faker.Phone.PtBr.generate_region_code()
"71"
iex> Faker.Phone.PtBr.generate_region_code()
"71"

  



  
    
      
    
    
      number_with_region(number)



        
          
        

    

  


  

      

          @spec number_with_region(binary()) :: binary()


      


Replace 'xx' for a random region number picked.
Examples
iex> Faker.Phone.PtBr.number_with_region("(xx) 9 1542-6461")
"(92) 9 1542-6461"
iex> Faker.Phone.PtBr.number_with_region("(xx) 4329-7052")
"(31) 4329-7052"
iex> Faker.Phone.PtBr.number_with_region("(xx) 9 7020-3032")
"(71) 9 7020-3032"
iex> Faker.Phone.PtBr.number_with_region("(xx) 5733-7603")
"(71) 5733-7603"

  



  
    
      
    
    
      phone()



        
          
        

    

  


  

      

          @spec phone() :: binary()


      


Returns a random phone number.
Examples
iex> Faker.Phone.PtBr.phone()
"(75) 9 1542-6461"
iex> Faker.Phone.PtBr.phone()
"(75) 4329-7052"
iex> Faker.Phone.PtBr.phone()
"(69) 9 7020-3032"
iex> Faker.Phone.PtBr.phone()
"(75) 5733-7603"

  



  
    
      
    
    
      region_code()



        
          
        

    

  


  


  


        

      


  

    
Faker.Phone.PtPt 
    



      
Functions for generating phone related data for portugal location

      


      
        Summary


  
    Functions
  


    
      
        cell_number()

      


        Returns a random cell phone number



    


    
      
        landline_number()

      


        Returns a random landline phone number



    


    
      
        number()

      


        Returns a random phone number.



    





      


      
        Functions


        


  
    
      
    
    
      cell_number()



        
          
        

    

  


  

      

          @spec cell_number() :: String.t()


      


Returns a random cell phone number
Examples
iex> Faker.Phone.PtPt.cell_number()
"919999999"
iex> Faker.Phone.PtPt.cell_number()
"929999999"
iex> Faker.Phone.PtPt.cell_number()
"939999999"
iex> Faker.Phone.PtPt.cell_number()
"969999999"

  



  
    
      
    
    
      landline_number()



        
          
        

    

  


  

      

          @spec landline_number() :: String.t()


      


Returns a random landline phone number
Examples
iex> Faker.Phone.PtPt.landline_number()
"299999999"
iex> Faker.Phone.PtPt.landline_number()
"299999998"
iex> Faker.Phone.PtPt.landline_number()
"399999999"
iex> Faker.Phone.PtPt.landline_number()
"399999998"

  



  
    
      
    
    
      number()



        
          
        

    

  


  

      

          @spec number() :: String.t()


      


Returns a random phone number.
Examples
iex> Faker.Phone.PtPt.number()
"929999999"
iex> Faker.Phone.PtPt.number()
"919999999"
iex> Faker.Phone.PtPt.number()
"234999999"
iex> Faker.Phone.PtPt.number()
"939999999"

  


        

      


  

    
Faker.Pizza 
    



      
Functions for generating Pizza related data in English.

      


      
        Summary


  
    Functions
  


    
      
        cheese()

      


        Returns a cheese string



    


    
      
        combo()

      


        Returns a combo string



    


    
      
        company()

      


        Returns a Pizza Restaurant string



    


    
      
        inches()

      


        Returns an inches string



    


    
      
        meat()

      


        Returns a meat string



    


    
      
        pizza()

      


        Returns a pizza



    


    
      
        pizzas(range \\ 2..5)

      


        Returns a list with a number of pizzas.



    


    
      
        sauce()

      


        Returns a sauce string



    


    
      
        size()

      


        Returns a size string



    


    
      
        size_or_inches()

      


        Returns a random size or inches



    


    
      
        style()

      


        Returns a pizza style



    


    
      
        topping()

      


        Returns a random cheese, sauce, meat or vegetarian topping



    


    
      
        toppings(range \\ 2..5)

      


        Returns a list with a number of toppings.



    


    
      
        vegetable()

      


        Returns a vegetable string



    





      


      
        Functions


        


  
    
      
    
    
      cheese()



        
          
        

    

  


  

      

          @spec cheese() :: String.t()


      


Returns a cheese string
Examples
iex> Faker.Pizza.cheese()
"Mozzarella"
iex> Faker.Pizza.cheese()
"Marscapone"
iex> Faker.Pizza.cheese()
"Blue (Bleu) Cheese"
iex> Faker.Pizza.cheese()
"Smoked Mozzarella"

  



  
    
      
    
    
      combo()



        
          
        

    

  


  

      

          @spec combo() :: String.t()


      


Returns a combo string
Examples
iex> Faker.Pizza.combo()
"Hot & Spicy"
iex> Faker.Pizza.combo()
"Breakfast"
iex> Faker.Pizza.combo()
"Thai Chicken"
iex> Faker.Pizza.combo()
"Poutine"

  



  
    
      
    
    
      company()



        
          
        

    

  


  

      

          @spec company() :: String.t()


      


Returns a Pizza Restaurant string
Examples
iex> Faker.Pizza.company()
"Papa Plastique"
iex> Faker.Pizza.company()
"Chicago Deep Dish"
iex> Faker.Pizza.company()
"Pizza Joe’s"
iex> Faker.Pizza.company()
"CosaNostra Pizza"

  



  
    
      
    
    
      inches()



        
          
        

    

  


  

      

          @spec inches() :: String.t()


      


Returns an inches string
Examples
iex> Faker.Pizza.inches()
"9\""
iex> Faker.Pizza.inches()
"10\""
iex> Faker.Pizza.inches()
"16\""
iex> Faker.Pizza.inches()
"14\""

  



  
    
      
    
    
      meat()



        
          
        

    

  


  

      

          @spec meat() :: String.t()


      


Returns a meat string
Examples
iex> Faker.Pizza.meat()
"Buffalo Chicken"
iex> Faker.Pizza.meat()
"Meatballs"
iex> Faker.Pizza.meat()
"Chicken"
iex> Faker.Pizza.meat()
"Meatballs"

  



  
    
      
    
    
      pizza()



        
          
        

    

  


  

      

          @spec pizza() :: String.t()


      


Returns a pizza
Examples
iex> Faker.Pizza.pizza()
"16\" with Fior di latte"
iex> Faker.Pizza.pizza()
"Medium New York Style with Clam and Reindeer"
iex> Faker.Pizza.pizza()
"9\" Africana"
iex> Faker.Pizza.pizza()
"16\" Meat Lovers"

  



    

  
    
      
    
    
      pizzas(range \\ 2..5)



        
          
        

    

  


  

      

          @spec pizzas(integer() | Range.t()) :: [String.t()]


      


Returns a list with a number of pizzas.
If an integer is provided, exactly that number of pizzas will be returned.
If a range is provided, the number will be in the range.
If no range or integer is specified it defaults to 2..5
Examples
iex> Faker.Pizza.pizzas()
[
  "14\" Greek Fajita",
  "Large with Reindeer, Buffalo Chicken, Egg, Chorizo, and Clam",
  "9\" Kebab",
  "9\" Sicilian Style Buffalo Chicken"
]
iex> Faker.Pizza.pizzas(2..3)
[
  "12\" Quattro Formaggio",
  "Medium Pesto Chicken"
]
iex> Faker.Pizza.pizzas(3..4)
[
  "Large Gluten-Free Corn with Oysters, Bacon, and Steak",
  "10\" Flatbread Pesto Chicken",
  "30\" Funghi",
  "Small with Sauerkraut"
]
iex> Faker.Pizza.pizzas(5)
[
  "Large Cheese",
  "Small Sweet Potato Crust with Mackerel, Jalapeños, Smoked Mozzarella, and Smoked Salmon",
  "30\" with Pickled Ginger, Meatballs, Goat Cheese, Prosciutto, and Pineapple",
  "9\" Detroit-style with Steak",
  "Family with Clam, Cherry Tomatoes, Salmon, and Chicken"
]

  



  
    
      
    
    
      sauce()



        
          
        

    

  


  

      

          @spec sauce() :: String.t()


      


Returns a sauce string
Examples
iex> Faker.Pizza.sauce()
"Spicy Tomato Sauce"
iex> Faker.Pizza.sauce()
"Hummus"
iex> Faker.Pizza.sauce()
"Pesto Sauce"
iex> Faker.Pizza.sauce()
"Hummus"

  



  
    
      
    
    
      size()



        
          
        

    

  


  

      

          @spec size() :: String.t()


      


Returns a size string
Examples
iex> Faker.Pizza.size()
"Personal"
iex> Faker.Pizza.size()
"Family"
iex> Faker.Pizza.size()
"Large"
iex> Faker.Pizza.size()
"Medium"

  



  
    
      
    
    
      size_or_inches()



        
          
        

    

  


  

      

          @spec size_or_inches() :: String.t()


      


Returns a random size or inches
Examples
iex> Faker.Pizza.size_or_inches()
"Family"
iex> Faker.Pizza.size_or_inches()
"14\""
iex> Faker.Pizza.size_or_inches()
"Personal"
iex> Faker.Pizza.size_or_inches()
"Medium"

  



  
    
      
    
    
      style()



        
          
        

    

  


  

      

          @spec style() :: String.t()


      


Returns a pizza style
Examples
iex> Faker.Pizza.style()
"Pizza Frittata"
iex> Faker.Pizza.style()
"Gluten-Free Corn"
iex> Faker.Pizza.style()
"Detroit-style"
iex> Faker.Pizza.style()
"Stuffed Crust"

  



  
    
      
    
    
      topping()



        
          
        

    

  


  

      

          @spec topping() :: String.t()


      


Returns a random cheese, sauce, meat or vegetarian topping
Examples
iex> Faker.Pizza.topping()
"Black Olives"
iex> Faker.Pizza.topping()
"Meatballs"
iex> Faker.Pizza.topping()
"Asiago"
iex> Faker.Pizza.topping()
"Philly Steak"

  



    

  
    
      
    
    
      toppings(range \\ 2..5)



        
          
        

    

  


  

      

          @spec toppings(integer() | Range.t()) :: [String.t()]


      


Returns a list with a number of toppings.
If an integer is provided, exactly that number of toppings will be returned.
If a range is provided, the number will be in the range.
If no range or integer is specified it defaults to 2..5
Examples
iex> Faker.Pizza.toppings()
["Pesto Sauce", "Fior di latte", "Broccoli", "Banana Peppers"]
iex> Faker.Pizza.toppings(4)
["Clam", "Reindeer", "Buffalo Chicken", "Egg"]
iex> Faker.Pizza.toppings(2..3)
["Sausage", "Green Peas"]
iex> Faker.Pizza.toppings(2..3)
["Shellfish", "Smoked Salmon"]

  



  
    
      
    
    
      vegetable()



        
          
        

    

  


  

      

          @spec vegetable() :: String.t()


      


Returns a vegetable string
Examples
iex> Faker.Pizza.vegetable()
"Mango"
iex> Faker.Pizza.vegetable()
"Black Olives"
iex> Faker.Pizza.vegetable()
"Green Olives"
iex> Faker.Pizza.vegetable()
"Sauerkraut"

  


        

      


  

    
Faker.Pokemon 
    



      
Function for generating Pokemon

      


      
        Summary


  
    Functions
  


    
      
        location()

      


        Returns a random Pokemon location



    


    
      
        name()

      


        Returns a random Pokemon name



    





      


      
        Functions


        


  
    
      
    
    
      location()



        
          
        

    

  


  

      

          @spec location() :: String.t()


      


Returns a random Pokemon location
Examples
iex> Faker.Pokemon.location()
"Vaniville Town"
iex> Faker.Pokemon.location()
"Slateport City"
iex> Faker.Pokemon.location()
"Shalour City"
iex> Faker.Pokemon.location()
"Solaceon Town"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random Pokemon name
Examples
iex> Faker.Pokemon.name()
"Fraxure"
iex> Faker.Pokemon.name()
"Shellos"
iex> Faker.Pokemon.name()
"Ambipom"
iex> Faker.Pokemon.name()
"Forretress"

  


        

      


  

    
Faker.Pokemon.De 
    



      
Functions for Pokemon names in German

      


      
        Summary


  
    Functions
  


    
      
        location()

      


        Returns a location from Pokemon universe



    


    
      
        name()

      


        Returns a Pokemon name



    





      


      
        Functions


        


  
    
      
    
    
      location()



        
          
        

    

  


  

      

          @spec location() :: String.t()


      


Returns a location from Pokemon universe
Examples
iex> Faker.Pokemon.De.location()
"Blumenparadies"
iex> Faker.Pokemon.De.location()
"Kraterberg"
iex> Faker.Pokemon.De.location()
"Zweiblattdorf"
iex> Faker.Pokemon.De.location()
"Sandgemme"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a Pokemon name
Examples
iex> Faker.Pokemon.De.name()
"Viscogon"
iex> Faker.Pokemon.De.name()
"Lepumentas"
iex> Faker.Pokemon.De.name()
"Quajutsu"
iex> Faker.Pokemon.De.name()
"Pyroleo"

  


        

      


  

    
Faker.Pokemon.En 
    



      
Functions for Pokemon names in English

      


      
        Summary


  
    Functions
  


    
      
        location()

      


        Returns a location from Pokemon universe



    


    
      
        name()

      


        Returns a Pokemon name



    





      


      
        Functions


        


  
    
      
    
    
      location()



        
          
        

    

  


  

      

          @spec location() :: String.t()


      


Returns a location from Pokemon universe
Examples
iex> Faker.Pokemon.En.location()
"Vaniville Town"
iex> Faker.Pokemon.En.location()
"Slateport City"
iex> Faker.Pokemon.En.location()
"Shalour City"
iex> Faker.Pokemon.En.location()
"Solaceon Town"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a Pokemon name
Examples
iex> Faker.Pokemon.En.name()
"Fraxure"
iex> Faker.Pokemon.En.name()
"Shellos"
iex> Faker.Pokemon.En.name()
"Ambipom"
iex> Faker.Pokemon.En.name()
"Forretress"

  


        

      


  

    
Faker.Pokemon.It 
    



      
Functions for Pokemon names in Italian

      


      
        Summary


  
    Functions
  


    
      
        location()

      


        Returns a location from Pokemon universe



    


    
      
        name()

      


        Returns a Pokemon name



    





      


      
        Functions


        


  
    
      
    
    
      location()



        
          
        

    

  


  

      

          @spec location() :: String.t()


      


Returns a location from Pokemon universe
Examples
iex> Faker.Pokemon.It.location()
"Arenipoli"
iex> Faker.Pokemon.It.location()
"Spiraria"
iex> Faker.Pokemon.It.location()
"Novartopoli"
iex> Faker.Pokemon.It.location()
"Castel Vanità"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a Pokemon name
Examples
iex> Faker.Pokemon.It.name()
"Magmortar"
iex> Faker.Pokemon.It.name()
"Gastly"
iex> Faker.Pokemon.It.name()
"Mienshao"
iex> Faker.Pokemon.It.name()
"Articuno"

  


        

      


  

    
Faker.Random behaviour
    



      
Behaviour that defines randomisation in faker.

      


      
        Summary


  
    Callbacks
  


    
      
        random_between(integer, integer)

      


    


    
      
        random_bytes(pos_integer)

      


    


    
      
        random_uniform()

      


    


    
      
        shuffle(t)

      


    





      


      
        Callbacks


        


  
    
      
    
    
      random_between(integer, integer)



        
          
        

    

  


  

      

          @callback random_between(integer(), integer()) :: integer()


      



  



  
    
      
    
    
      random_bytes(pos_integer)



        
          
        

    

  


  

      

          @callback random_bytes(pos_integer()) :: binary()


      



  



  
    
      
    
    
      random_uniform()



        
          
        

    

  


  

      

          @callback random_uniform() :: float()


      



  



  
    
      
    
    
      shuffle(t)



        
          
        

    

  


  

      

          @callback shuffle(Enum.t()) :: list()


      



  


        

      


  

    
Faker.Random.Elixir 
    



      
Default implementation of random functions based on erlang and elixir standard library.

      


      
        Summary


  
    Functions
  


    
      
        random_between(left, right)

      


        Callback implementation for Faker.Random.random_between/2.



    


    
      
        random_bytes(total)

      


        Callback implementation for Faker.Random.random_bytes/1.



    


    
      
        random_uniform()

      


        Callback implementation for Faker.Random.random_uniform/0.



    


    
      
        shuffle(enum)

      


        Callback implementation for Faker.Random.shuffle/1.



    





      


      
        Functions


        


  
    
      
    
    
      random_between(left, right)



        
          
        

    

  


  

Callback implementation for Faker.Random.random_between/2.

  



  
    
      
    
    
      random_bytes(total)



        
          
        

    

  


  

Callback implementation for Faker.Random.random_bytes/1.

  



  
    
      
    
    
      random_uniform()



        
          
        

    

  


  

Callback implementation for Faker.Random.random_uniform/0.

  



  
    
      
    
    
      shuffle(enum)



        
          
        

    

  


  

Callback implementation for Faker.Random.shuffle/1.

  


        

      


  

    
Faker.StarWars 
    



      
Functions for generating StarWars related data

      


      
        Summary


  
    Functions
  


    
      
        character()

      


        Returns a Star Wars character name



    


    
      
        planet()

      


        Returns a Star Wars planet name



    


    
      
        quote()

      


        Returns a Star Wars quote



    





      


      
        Functions


        


  
    
      
    
    
      character()



        
          
        

    

  


  

      

          @spec character() :: String.t()


      


Returns a Star Wars character name
Examples
iex> Faker.StarWars.character()
"Greedo"
iex> Faker.StarWars.character()
"Jek Tono Porkins"
iex> Faker.StarWars.character()
"Poe Dameron"
iex> Faker.StarWars.character()
"R4-P17"

  



  
    
      
    
    
      planet()



        
          
        

    

  


  

      

          @spec planet() :: String.t()


      


Returns a Star Wars planet name
Examples
iex> Faker.StarWars.planet()
"Mon Cala"
iex> Faker.StarWars.planet()
"Ryloth"
iex> Faker.StarWars.planet()
"Endor"
iex> Faker.StarWars.planet()
"Shili"

  



  
    
      
    
    
      quote()



        
          
        

    

  


  

      

          @spec quote() :: String.t()


      


Returns a Star Wars quote
Examples
iex> Faker.StarWars.quote()
"Congratulations. You are being rescued. Please do not resist."
iex> Faker.StarWars.quote()
"What chance do we have? The question is 'what choice'. Run, hide, plead for mercy, scatter your forces. You give way to an enemy this evil with this much power and you condemn the galaxy to an eternity of submission. The time to fight is now!"
iex> Faker.StarWars.quote()
"Will someone get this big walking carpet out of my way?"
iex> Faker.StarWars.quote()
"To be Jedi is to face the truth, and choose. Give off light, or darkness, Padawan. Be a candle, or the night."

  


        

      


  

    
Faker.StarWars.En 
    



      
Functions for generating StarWars related data in English

      


      
        Summary


  
    Functions
  


    
      
        character()

      


        Returns a Star Wars character name in English



    


    
      
        planet()

      


        Returns a Star Wars planet name in English



    


    
      
        quote()

      


        Returns a Star Wars quote in English



    





      


      
        Functions


        


  
    
      
    
    
      character()



        
          
        

    

  


  

      

          @spec character() :: String.t()


      


Returns a Star Wars character name in English
Examples
iex> Faker.StarWars.En.character()
"Greedo"
iex> Faker.StarWars.En.character()
"Jek Tono Porkins"
iex> Faker.StarWars.En.character()
"Poe Dameron"
iex> Faker.StarWars.En.character()
"R4-P17"

  



  
    
      
    
    
      planet()



        
          
        

    

  


  

      

          @spec planet() :: String.t()


      


Returns a Star Wars planet name in English
Examples
iex> Faker.StarWars.En.planet()
"Mon Cala"
iex> Faker.StarWars.En.planet()
"Ryloth"
iex> Faker.StarWars.En.planet()
"Endor"
iex> Faker.StarWars.En.planet()
"Shili"

  



  
    
      
    
    
      quote()



        
          
        

    

  


  

      

          @spec quote() :: String.t()


      


Returns a Star Wars quote in English
Examples
iex> Faker.StarWars.En.quote()
"Congratulations. You are being rescued. Please do not resist."
iex> Faker.StarWars.En.quote()
"What chance do we have? The question is 'what choice'. Run, hide, plead for mercy, scatter your forces. You give way to an enemy this evil with this much power and you condemn the galaxy to an eternity of submission. The time to fight is now!"
iex> Faker.StarWars.En.quote()
"Will someone get this big walking carpet out of my way?"
iex> Faker.StarWars.En.quote()
"To be Jedi is to face the truth, and choose. Give off light, or darkness, Padawan. Be a candle, or the night."

  


        

      


  

    
Faker.String 
    



      
Function for generating Strings

      


      
        Summary


  
    Functions
  


    
      
        base64(length \\ 8)

      


        Returns a random base64 String



    


    
      
        naughty()

      


        Returns a random string taken from the Big List of Naughty Strings.



    





      


      
        Functions


        


    

  
    
      
    
    
      base64(length \\ 8)



        
          
        

    

  


  

      

          @spec base64(pos_integer()) :: String.t()


      


Returns a random base64 String
Examples
iex> Faker.String.base64()
"1tmLiMhm"
iex> Faker.String.base64()
"29Tee6SN"
iex> Faker.String.base64(5)
"Kfp7+"
iex> Faker.String.base64(100)
"KLJyZ7xbfJZPMy3J7dAsyfOB3vnZIqFGv4VQil8D/xh1C/Nj9K7xJk47zJtcKsy5mjpJk61Wt3jcJu3bfgwuScTmOOYt4ykzvDUl"

  



  
    
      
    
    
      naughty()



        
          
        

    

  


  

      

          @spec naughty() :: String.t()


      


Returns a random string taken from the Big List of Naughty Strings.
Examples
iex> Faker.String.naughty()
"̦H̬̤̗̤͝e͜ ̜̥̝̻͍̟́w̕h̖̯͓o̝͙̖͎̱̮ ҉̺̙̞̟͈W̷̼̭a̺̪͍į͈͕̭͙̯̜t̶̼̮s̘͙͖̕ ̠̫̠B̻͍͙͉̳ͅe̵h̵̬͇̫͙i̹͓̳̳̮͎̫̕n͟d̴̪̜̖ ̰͉̩͇͙̲͞ͅT͖̼͓̪͢h͏͓̮̻e̬̝̟ͅ ̤̹̝W͙̞̝͔͇͝ͅa͏͓͔̹̼̣l̴͔̰̤̟͔ḽ̫.͕"
iex> Faker.String.naughty()
"1#QNAN"
iex> Faker.String.naughty()
"Craig Cockburn, Software Specialist"
iex> Faker.String.naughty()
"\"\`\'><script>\\x09javascript:alert(1)</script>"
iex> Faker.String.naughty()
"𝚃𝚑𝚎 𝚚𝚞𝚒𝚌𝚔 𝚋𝚛𝚘𝚠𝚗 𝚏𝚘𝚡 𝚓𝚞𝚖𝚙𝚜 𝚘𝚟𝚎𝚛 𝚝𝚑𝚎 𝚕𝚊𝚣𝚢 𝚍𝚘𝚐"

  


        

      


  

    
Faker.Superhero 
    



      
Functions for generating Superhero data

      


      
        Summary


  
    Functions
  


    
      
        descriptor()

      


        Returns a random Superhero descriptor



    


    
      
        name()

      


        Returns a random Superhero name



    


    
      
        power()

      


        Returns a random Superhero power



    


    
      
        prefix()

      


        Returns a random Superhero name prefix



    


    
      
        suffix()

      


        Returns a random Superhero name suffix



    





      


      
        Functions


        


  
    
      
    
    
      descriptor()



        
          
        

    

  


  

      

          @spec descriptor() :: String.t()


      


Returns a random Superhero descriptor
Examples
iex> Faker.Superhero.descriptor()
"Ronin"
iex> Faker.Superhero.descriptor()
"Azrael"
iex> Faker.Superhero.descriptor()
"Beyonder"
iex> Faker.Superhero.descriptor()
"Phantom"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random Superhero name
Examples
iex> Faker.Superhero.name()
"Red Beyonder the Hunter"
iex> Faker.Superhero.name()
"Penance Strike"
iex> Faker.Superhero.name()
"Sage"
iex> Faker.Superhero.name()
"Giant Aqua I"

  



  
    
      
    
    
      power()



        
          
        

    

  


  

      

          @spec power() :: String.t()


      


Returns a random Superhero power
Examples
iex> Faker.Superhero.power()
"Death Touch"
iex> Faker.Superhero.power()
"Shapeshifting"
iex> Faker.Superhero.power()
"Gliding"
iex> Faker.Superhero.power()
"Illusions"

  



  
    
      
    
    
      prefix()



        
          
        

    

  


  

      

          @spec prefix() :: String.t()


      


Returns a random Superhero name prefix
Examples
iex> Faker.Superhero.prefix()
"The"
iex> Faker.Superhero.prefix()
"Red"
iex> Faker.Superhero.prefix()
"The"
iex> Faker.Superhero.prefix()
"Captain"

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random Superhero name suffix
Examples
iex> Faker.Superhero.suffix()
"Strange"
iex> Faker.Superhero.suffix()
"Claw"
iex> Faker.Superhero.suffix()
"the Hunter"
iex> Faker.Superhero.suffix()
"the Hunter"

  


        

      


  

    
Faker.Superhero.En 
    



      
Functions for Superhero data in English

      


      
        Summary


  
    Functions
  


    
      
        descriptor()

      


        Returns a random descriptor



    


    
      
        name()

      


        Returns a Superhero name



    


    
      
        power()

      


        Returns a random Superhero power



    


    
      
        prefix()

      


        Returns a random prefix



    


    
      
        suffix()

      


        Returns a random suffix



    





      


      
        Functions


        


  
    
      
    
    
      descriptor()



        
          
        

    

  


  

      

          @spec descriptor() :: String.t()


      


Returns a random descriptor
Examples
iex> Faker.Superhero.En.descriptor()
"Ronin"
iex> Faker.Superhero.En.descriptor()
"Azrael"
iex> Faker.Superhero.En.descriptor()
"Beyonder"
iex> Faker.Superhero.En.descriptor()
"Phantom"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a Superhero name
Examples
iex> Faker.Superhero.En.name()
"Red Beyonder the Hunter"
iex> Faker.Superhero.En.name()
"Penance Strike"
iex> Faker.Superhero.En.name()
"Sage"
iex> Faker.Superhero.En.name()
"Giant Aqua I"

  



  
    
      
    
    
      power()



        
          
        

    

  


  

      

          @spec power() :: String.t()


      


Returns a random Superhero power
Examples
iex> Faker.Superhero.En.power()
"Death Touch"
iex> Faker.Superhero.En.power()
"Shapeshifting"
iex> Faker.Superhero.En.power()
"Gliding"
iex> Faker.Superhero.En.power()
"Illusions"

  



  
    
      
    
    
      prefix()



        
          
        

    

  


  

      

          @spec prefix() :: String.t()


      


Returns a random prefix
Examples
iex> Faker.Superhero.En.prefix()
"The"
iex> Faker.Superhero.En.prefix()
"Red"
iex> Faker.Superhero.En.prefix()
"The"
iex> Faker.Superhero.En.prefix()
"Captain"

  



  
    
      
    
    
      suffix()



        
          
        

    

  


  

      

          @spec suffix() :: String.t()


      


Returns a random suffix
Examples
iex> Faker.Superhero.En.suffix()
"Strange"
iex> Faker.Superhero.En.suffix()
"Claw"
iex> Faker.Superhero.En.suffix()
"the Hunter"
iex> Faker.Superhero.En.suffix()
"the Hunter"

  


        

      


  

    
Faker.Team 
    



      
Functions for generating team related data

      


      
        Summary


  
    Functions
  


    
      
        creature()

      


        Returns a string of the form [state] [creature]



    


    
      
        name()

      


        Returns a random creature name



    





      


      
        Functions


        


  
    
      
    
    
      creature()



        
          
        

    

  


  

      

          @spec creature() :: String.t()


      


Returns a string of the form [state] [creature]
Examples
iex> Faker.Team.creature()
"prophets"
iex> Faker.Team.creature()
"cats"
iex> Faker.Team.creature()
"enchanters"
iex> Faker.Team.creature()
"banshees"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a random creature name
Examples
iex> Faker.Team.name()
"Hawaii cats"
iex> Faker.Team.name()
"Oklahoma banshees"
iex> Faker.Team.name()
"Texas elves"
iex> Faker.Team.name()
"Iowa fishes"

  


        

      


  

    
Faker.Team.En 
    



      
Functions for generating team related data in English

      


      
        Summary


  
    Functions
  


    
      
        creature()

      


        Returns a random creature name



    


    
      
        name()

      


        Returns a string of the form [state] [creature]



    





      


      
        Functions


        


  
    
      
    
    
      creature()



        
          
        

    

  


  

      

          @spec creature() :: String.t()


      


Returns a random creature name
Examples
iex> Faker.Team.En.creature()
"prophets"
iex> Faker.Team.En.creature()
"cats"
iex> Faker.Team.En.creature()
"enchanters"
iex> Faker.Team.En.creature()
"banshees"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a string of the form [state] [creature]
Examples
iex> Faker.Team.En.name()
"Hawaii cats"
iex> Faker.Team.En.name()
"Oklahoma banshees"
iex> Faker.Team.En.name()
"Texas elves"
iex> Faker.Team.En.name()
"Iowa fishes"

  


        

      


  

    
Faker.Team.PtBr 
    



      
Functions for generating team related data in Brazilian Portuguese

      


      
        Summary


  
    Functions
  


    
      
        creature()

      


        Returns a random creature name



    


    
      
        name()

      


        Returns a string of the form [state] [creature]



    





      


      
        Functions


        


  
    
      
    
    
      creature()



        
          
        

    

  


  

      

          @spec creature() :: String.t()


      


Returns a random creature name
Examples
iex> Faker.Team.PtBr.creature()
"corujas"
iex> Faker.Team.PtBr.creature()
"ovelha"
iex> Faker.Team.PtBr.creature()
"vampiros"
iex> Faker.Team.PtBr.creature()
"macacos"

  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @spec name() :: String.t()


      


Returns a string of the form [state] [creature]
Examples
iex> Faker.Team.PtBr.name()
"corujas de Alaska"
iex> Faker.Team.PtBr.name()
"vampiros de California"
iex> Faker.Team.PtBr.name()
"pássaros de Kentucky"
iex> Faker.Team.PtBr.name()
"vixens de Kentucky"

  


        

      


  

    
Faker.UUID 
    



      
Functions for generating UUID's.

      


      
        Summary


  
    Functions
  


    
      
        v4()

      


        Generate a random v4 UUID.



    





      


      
        Functions


        


  
    
      
    
    
      v4()



        
          
        

    

  


  

      

          @spec v4() :: String.t()


      


Generate a random v4 UUID.
Examples
iex> Faker.UUID.v4()
"d6d98b88-c866-4496-9bd4-de7ba48d0f52"
iex> Faker.UUID.v4()
"29fa7bf9-0728-4272-a7bc-5b7c964f332d"
iex> Faker.UUID.v4()
"c9edd02c-c9f3-41de-b9d9-22a146bf8550"
iex> Faker.UUID.v4()
"8a5f03ff-1875-4bf3-a3f4-aef1264e3bcc"

  


        

      


  

    
Faker.Util 
    



      
Collection of useful functions for your fake data. Functions aware of locale.

      


      
        Summary


  
    Functions
  


    
      
        cycle(cycle_pid)

      


        Cycle randomly through the given list with guarantee every element of the list is used once before
elements are being picked again. This is done by keeping a list of remaining elements that have
not been picked yet. The list of remaining element is returned, as well as the randomly picked
element.



    


    
      
        cycle_start(items)

      


        Start a cycle. See cycle/1



    


    
      
        digit()

      


        Get a random digit as a string; one of 0-9



    


    
      
        format(format_str, rules \\ [d: &digit/0, A: &upper_letter/0, a: &lower_letter/0, b: &letter/0])

      


        Format a string with randomly generated data. Format specifiers are replaced by random values. A
format specifier follows this prototype



    


    
      
        join(n, joiner \\ "", fun)

      


        Execute fun n times with the index as first param and join the results with joiner



    


    
      
        letter()

      


        Get a random alphabet character as a string; one of a-z or A-Z



    


    
      
        list(n, fun)

      


        Execute fun n times with the index as first param and return the results as a list



    


    
      
        lower_letter()

      


        Get a random lowercase character as a string; one of a-z



    


    
      
        pick(enum)

      


    


    
      
        pick(enum, blacklist)

      


        Pick a random element from an enumerable. Can also be provided a blacklist enumerable as a second argument.



    


    
      
        sample_uniq(count, sampler, acc \\ MapSet.new())

      


        Generate N unique elements



    


    
      
        to_sentence(items)

      


        Converts a list to a string, with "and" before the last item. Uses an Oxford comma.



    


    
      
        upper_letter()

      


        Get a random uppercase character as a string; one of A-Z



    





      


      
        Functions


        


  
    
      
    
    
      cycle(cycle_pid)



        
          
        

    

  


  

      

          @spec cycle(pid()) :: any()


      


Cycle randomly through the given list with guarantee every element of the list is used once before
elements are being picked again. This is done by keeping a list of remaining elements that have
not been picked yet. The list of remaining element is returned, as well as the randomly picked
element.

  



  
    
      
    
    
      cycle_start(items)



        
          
        

    

  


  

      

          @spec cycle_start([any()]) :: pid()


      


Start a cycle. See cycle/1

  



  
    
      
    
    
      digit()



        
          
        

    

  


  

      

          @spec digit() :: binary()


      


Get a random digit as a string; one of 0-9
Examples
iex> Faker.Util.digit()
"0"
iex> Faker.Util.digit()
"1"
iex> Faker.Util.digit()
"5"
iex> Faker.Util.digit()
"4"

  



    

  
    
      
    
    
      format(format_str, rules \\ [d: &digit/0, A: &upper_letter/0, a: &lower_letter/0, b: &letter/0])



        
          
        

    

  


  

      

          @spec format(binary(), Keyword.t()) :: binary()


      


Format a string with randomly generated data. Format specifiers are replaced by random values. A
format specifier follows this prototype:
%[length]specifier
The following specifier rules are present by default:
	d: digits 0-9
	a: lowercase letter a-z
	A: uppercase letter A-Z
	b: anycase letter a-z, A-Z

The specifier rules can be overridden using the second argument.
Examples
iex> Faker.Util.format("%2d-%3d %a%A %2d%%")
"01-542 aS 61%"
iex> Faker.Util.format("%8nBATMAN", n: fn() -> "nana " end)
"nana nana nana nana nana nana nana nana BATMAN"

  



    

  
    
      
    
    
      join(n, joiner \\ "", fun)



        
          
        

    

  


  

      

          @spec join(integer(), binary(), (-> binary())) :: binary()


      


Execute fun n times with the index as first param and join the results with joiner
Examples
iex> Faker.Util.join(3, ", ", &Faker.Code.isbn13/0)
"9781542646109, 9783297052358, 9790203032090"
iex> Faker.Util.join(4, "-", fn -> Faker.format("####") end)
"7337-6033-7459-8109"
iex> Faker.Util.join(2, " vs ", &Faker.Superhero.name/0)
"Falcon vs Green Blink Claw"
iex> Faker.Util.join(2, " or ", &Faker.Color.name/0)
"Purple or White"

  



  
    
      
    
    
      letter()



        
          
        

    

  


  

      

          @spec letter() :: binary()


      


Get a random alphabet character as a string; one of a-z or A-Z
Examples
iex> Faker.Util.letter()
"E"
iex> Faker.Util.letter()
"L"
iex> Faker.Util.letter()
"R"
iex> Faker.Util.letter()
"C"
iex> Faker.Util.letter()
"e"

  



  
    
      
    
    
      list(n, fun)



        
          
        

    

  


  

      

          @spec list(integer(), (integer() -> any())) :: [any()]


          @spec list(integer(), (-> any())) :: [any()]


      


Execute fun n times with the index as first param and return the results as a list
Examples
iex> Faker.Util.list(3, &(&1))
[0, 1, 2]
iex> Faker.Util.list(3, &(&1 + 1))
[1, 2, 3]
iex> Faker.Util.list(5, &(&1 * &1))
[0, 1, 4, 9, 16]
iex> Faker.Util.list(3, &(to_string(&1)))
["0", "1", "2"]

  



  
    
      
    
    
      lower_letter()



        
          
        

    

  


  

      

          @spec lower_letter() :: binary()


      


Get a random lowercase character as a string; one of a-z
Examples
iex> Faker.Util.lower_letter()
"e"
iex> Faker.Util.lower_letter()
"l"
iex> Faker.Util.lower_letter()
"r"
iex> Faker.Util.lower_letter()
"c"

  



  
    
      
    
    
      pick(enum)



        
          
        

    

  


  


  



  
    
      
    
    
      pick(enum, blacklist)



        
          
        

    

  


  

      

          @spec pick(Enum.t(), Enum.t()) :: any()


      


Pick a random element from an enumerable. Can also be provided a blacklist enumerable as a second argument.
Examples
iex> Faker.Util.pick(10..100)
79
iex> Faker.Util.pick([1, 3, 5, 7])
3
iex> Faker.Util.pick([true, false, nil])
true
iex> Faker.Util.pick(["a", "b", "c"], ["b"])
"a"
iex> Faker.Util.pick([1, "2", 3.0], 1..10)
"2"

  



    

  
    
      
    
    
      sample_uniq(count, sampler, acc \\ MapSet.new())



        
          
        

    

  


  

      

          @spec sample_uniq(pos_integer(), (-> any()), MapSet.t()) :: [any()]


      


Generate N unique elements
Examples
iex> Faker.Util.sample_uniq(2, &Faker.Internet.email/0)
["conor2058@schiller.com", "elizabeth2056@rolfson.net"]
iex> Faker.Util.sample_uniq(10, fn -> Faker.String.base64(4) end)
[
  "0CzJ",
  "3nuk",
  "D1Ip",
  "IqFG",
  "My3J",
  "W3yW",
  "e/kH",
  "gd75",
  "hVCK",
  "snJn"
]
iex> Faker.Util.sample_uniq(1, &Faker.Phone.EnUs.area_code/0)
["508"]
iex> Faker.Util.sample_uniq(0, &Faker.Internet.email/0)
** (FunctionClauseError) no function clause matching in Faker.Util.sample_uniq/3

  



  
    
      
    
    
      to_sentence(items)



        
          
        

    

  


  

      

          @spec to_sentence([binary()]) :: binary()


      


Converts a list to a string, with "and" before the last item. Uses an Oxford comma.
Examples
iex> Faker.Util.to_sentence(["Black", "White"])
"Black and White"
iex> Faker.Util.to_sentence(["Jon Snow"])
"Jon Snow"
iex> Faker.Util.to_sentence(["Oceane", "Angeline", "Nicholas"])
"Angeline, Nicholas, and Oceane"
iex> Faker.Util.to_sentence(["One", "Two", "Three", "Four"])
"Two, Three, Four, and One"

  



  
    
      
    
    
      upper_letter()



        
          
        

    

  


  

      

          @spec upper_letter() :: binary()


      


Get a random uppercase character as a string; one of A-Z
Examples
iex> Faker.Util.upper_letter()
"E"
iex> Faker.Util.upper_letter()
"L"
iex> Faker.Util.upper_letter()
"R"
iex> Faker.Util.upper_letter()
"C"

  


        

      


  

    
Faker.Vehicle 
    



      
Functions for generating Vehicle related data

      


      
        Summary


  
    Functions
  


    
      
        body_style()

      


        Returns a vehicle body style string



    


    
      
        drivetrain()

      


        Returns a vehicle drivetrain string



    


    
      
        fuel_type()

      


        Returns a vehicle fuel type string



    


    
      
        make()

      


        Returns a vehicle make string



    


    
      
        make_and_model()

      


        Returns a vehicle make and model string



    


    
      
        model()

      


        Returns a vehicle model string



    


    
      
        model(make)

      


        Returns a vehicle model string belonging to the given make



    


    
      
        option()

      


        Returns a vehicle option string



    


    
      
        options()

      


        Returns a vehicle option string



    


    
      
        options(number)

      


        Returns a list of vehicle options()



    


    
      
        standard_spec()

      


        Returns a vehicle standard option string



    


    
      
        standard_specs()

      


        Returns a list of vehicle standard specs



    


    
      
        standard_specs(number)

      


        Returns a list of vehicle standard specs of the given length



    


    
      
        transmission()

      


        Returns a vehicle transmission string



    


    
      
        vin()

      


        Returns a vehicle identification number string



    





      


      
        Functions


        


  
    
      
    
    
      body_style()



        
          
        

    

  


  

      

          @spec body_style() :: String.t()


      


Returns a vehicle body style string
Examples
iex> Faker.Vehicle.body_style()
"Minivan"
iex> Faker.Vehicle.body_style()
"Hatchback"
iex> Faker.Vehicle.body_style()
"Crew Cab Pickup"
iex> Faker.Vehicle.body_style()
"Regular Cab Pickup"

  



  
    
      
    
    
      drivetrain()



        
          
        

    

  


  

      

          @spec drivetrain() :: String.t()


      


Returns a vehicle drivetrain string
Examples
iex> Faker.Vehicle.drivetrain()
"4x2/2-wheel drive"
iex> Faker.Vehicle.drivetrain()
"4x4/4-wheel drive"
iex> Faker.Vehicle.drivetrain()
"4x2/2-wheel drive"
iex> Faker.Vehicle.drivetrain()
"RWD"

  



  
    
      
    
    
      fuel_type()



        
          
        

    

  


  

      

          @spec fuel_type() :: String.t()


      


Returns a vehicle fuel type string
Examples
iex> Faker.Vehicle.fuel_type()
"Ethanol"
iex> Faker.Vehicle.fuel_type()
"E-85/Gasoline"
iex> Faker.Vehicle.fuel_type()
"Compressed Natural Gas"
iex> Faker.Vehicle.fuel_type()
"Gasoline Hybrid"

  



  
    
      
    
    
      make()



        
          
        

    

  


  

      

          @spec make() :: String.t()


      


Returns a vehicle make string
Examples
iex> Faker.Vehicle.make()
"Lincoln"
iex> Faker.Vehicle.make()
"Dodge"
iex> Faker.Vehicle.make()
"Chevrolet"
iex> Faker.Vehicle.make()
"Honda"

  



  
    
      
    
    
      make_and_model()



        
          
        

    

  


  

      

          @spec make_and_model() :: String.t()


      


Returns a vehicle make and model string
Examples
iex> Faker.Vehicle.make_and_model()
"Lincoln MKZ"
iex> Faker.Vehicle.make_and_model()
"Chevrolet Malibu"
iex> Faker.Vehicle.make_and_model()
"Ford Focus"
iex> Faker.Vehicle.make_and_model()
"Ford Focus"

  



  
    
      
    
    
      model()



        
          
        

    

  


  

      

          @spec model() :: String.t()


      


Returns a vehicle model string
Examples
iex> Faker.Vehicle.model()
"Encore"
iex> Faker.Vehicle.model()
"S5"
iex> Faker.Vehicle.model()
"Fiesta"
iex> Faker.Vehicle.model()
"X1"

  



  
    
      
    
    
      model(make)



        
          
        

    

  


  

      

          @spec model(String.t()) :: String.t()


      


Returns a vehicle model string belonging to the given make
Examples
iex> Faker.Vehicle.model("Ford")
"Focus"
iex> Faker.Vehicle.model("BMW")
"X5"
iex> Faker.Vehicle.model("Audi")
"A4"
iex> Faker.Vehicle.model("Toyota")
"Corolla"

  



  
    
      
    
    
      option()



        
          
        

    

  


  

      

          @spec option() :: String.t()


      


Returns a vehicle option string
Examples
iex> Faker.Vehicle.option()
"Premium Sound"
iex> Faker.Vehicle.option()
"Power Steering"
iex> Faker.Vehicle.option()
"A/C: Front"
iex> Faker.Vehicle.option()
"Keyless Entry"

  



  
    
      
    
    
      options()



        
          
        

    

  


  

      

          @spec options() :: String.t()


      


Returns a vehicle option string
Examples
iex> Faker.Vehicle.option()
"Premium Sound"
iex> Faker.Vehicle.option()
"Power Steering"
iex> Faker.Vehicle.option()
"A/C: Front"
iex> Faker.Vehicle.option()
"Keyless Entry"

  



  
    
      
    
    
      options(number)



        
          
        

    

  


  

      

          @spec options(non_neg_integer()) :: [String.t()]


      


Returns a list of vehicle options()
Examples
iex> Faker.Vehicle.options()
["Power Steering", "A/C: Front", "Keyless Entry", "AM/FM Stereo", "Power Steering", "Antilock Brakes", "8-Track Player", "Leather Interior"]
iex> Faker.Vehicle.options()
["MP3 (Multi Disc)", "A/C: Rear", "Fog Lights", "Power Windows", "Cruise Control", "Premium Sound", "A/C: Front"]
iex> Faker.Vehicle.options()
["Tinted Glass", "MP3 (Single Disc)", "CD (Multi Disc)"]
iex> Faker.Vehicle.options()
["Fog Lights", "Rear Window Wiper", "MP3 (Multi Disc)", "Navigation", "Airbag: Side", "Rear Window Defroster", "Premium Sound"]

  



  
    
      
    
    
      standard_spec()



        
          
        

    

  


  

      

          @spec standard_spec() :: String.t()


      


Returns a vehicle standard option string
Examples
iex> Faker.Vehicle.standard_spec()
"Tire pressure monitoring system (TPMS)"
iex> Faker.Vehicle.standard_spec()
"20\" x 9.0\" front & 20\" x 10.0\" rear aluminum wheels"
iex> Faker.Vehicle.standard_spec()
"Deluxe insulation group"
iex> Faker.Vehicle.standard_spec()
"Torsion beam rear suspension w/stabilizer bar"

  



  
    
      
    
    
      standard_specs()



        
          
        

    

  


  

      

          @spec standard_specs() :: [String.t()]


      


Returns a list of vehicle standard specs
Examples
iex> Faker.Vehicle.standard_specs()
["20\" x 9.0\" front & 20\" x 10.0\" rear aluminum wheels", "Deluxe insulation group", "Torsion beam rear suspension w/stabilizer bar", "High performance suspension", "200mm front axle", "Traveler/mini trip computer", "P235/50R18 all-season tires", "Front door tinted glass"]
iex> Faker.Vehicle.standard_specs()
["625-amp maintenance-free battery", "Body color sill extension", "Cargo compartment cover", "Dana 44/226mm rear axle", "Tachometer", "Leather-wrapped parking brake handle", "Side-impact door beams"]
iex> Faker.Vehicle.standard_specs()
["Tilt steering column", "Luxury front & rear floor mats w/logo", "HomeLink universal transceiver"]
iex> Faker.Vehicle.standard_specs()
["Multi-reflector halogen headlamps", "Multi-info display -inc: driving range, average MPG, current MPG, average speed, outside temp, elapsed time, maintenance & diagnostic messages", "Zone body construction -inc: front/rear crumple zones, hood deformation point", "60/40 split fold-down rear seat w/outboard adjustable headrests", "Trim-panel-mounted storage net", "Front side-impact airbags", "Front/rear spot-lamp illumination"]

  



  
    
      
    
    
      standard_specs(number)



        
          
        

    

  


  

      

          @spec standard_specs(non_neg_integer()) :: [String.t()]


      


Returns a list of vehicle standard specs of the given length
Examples
iex> Faker.Vehicle.En.standard_specs(3)
["Tire pressure monitoring system (TPMS)", "20\" x 9.0\" front & 20\" x 10.0\" rear aluminum wheels", "Deluxe insulation group"]
iex> Faker.Vehicle.En.standard_specs(3)
["Torsion beam rear suspension w/stabilizer bar", "High performance suspension", "200mm front axle"]
iex> Faker.Vehicle.En.standard_specs(3)
["Traveler/mini trip computer", "P235/50R18 all-season tires", "Front door tinted glass"]
iex> Faker.Vehicle.En.standard_specs(3)
["XM satellite radio receiver -inc: 90 day trial subscription", "625-amp maintenance-free battery", "Body color sill extension"]

  



  
    
      
    
    
      transmission()



        
          
        

    

  


  

      

          @spec transmission() :: String.t()


      


Returns a vehicle transmission string
Examples
iex> Faker.Vehicle.transmission()
"CVT"
iex> Faker.Vehicle.transmission()
"Automatic"
iex> Faker.Vehicle.transmission()
"Manual"
iex> Faker.Vehicle.transmission()
"Automanual"

  



  
    
      
    
    
      vin()



        
          
        

    

  


  

Returns a vehicle identification number string
Examples
iex> Faker.Vehicle.vin()
"1C68203VCV0360337"
iex> Faker.Vehicle.vin()
"5190V7FL8YX113016"
iex> Faker.Vehicle.vin()
"4RSE9035H9JA97940"
iex> Faker.Vehicle.vin()
"59E4A13G890C97377"

  


        

      


  

    
Faker.Vehicle.En 
    



      
Functions for generating Vehicle related data in English

      


      
        Summary


  
    Functions
  


    
      
        body_style()

      


        Returns a vehicle body style string



    


    
      
        drivetrain()

      


        Returns a vehicle drivetrain string



    


    
      
        fuel_type()

      


        Returns a vehicle fuel type string



    


    
      
        make()

      


        Returns a vehicle make string



    


    
      
        make_and_model()

      


        Returns a vehicle make and model string



    


    
      
        model()

      


        Returns a vehicle model string



    


    
      
        model(make)

      


        Returns a realistic vehicle model string
for the given model.



    


    
      
        option()

      


        Returns a vehicle option string



    


    
      
        options()

      


        Returns a list of vehicle options()



    


    
      
        options(number)

      


        Returns a list of vehicle options of the given length



    


    
      
        standard_spec()

      


        Reterns a vehicle standard option string



    


    
      
        standard_specs()

      


        Returns a list of vehicle standard specs



    


    
      
        standard_specs(number)

      


        Returns a list of vehicle standard specs of the given length



    


    
      
        transmission()

      


        Returns a vehicle transmission string



    





      


      
        Functions


        


  
    
      
    
    
      body_style()



        
          
        

    

  


  

      

          @spec body_style() :: String.t()


      


Returns a vehicle body style string
Examples
iex> Faker.Vehicle.En.body_style()
"Minivan"
iex> Faker.Vehicle.En.body_style()
"Hatchback"
iex> Faker.Vehicle.En.body_style()
"Crew Cab Pickup"
iex> Faker.Vehicle.En.body_style()
"Regular Cab Pickup"

  



  
    
      
    
    
      drivetrain()



        
          
        

    

  


  

      

          @spec drivetrain() :: String.t()


      


Returns a vehicle drivetrain string
Examples
iex> Faker.Vehicle.En.drivetrain()
"4x2/2-wheel drive"
iex> Faker.Vehicle.En.drivetrain()
"4x4/4-wheel drive"
iex> Faker.Vehicle.En.drivetrain()
"4x2/2-wheel drive"
iex> Faker.Vehicle.En.drivetrain()
"RWD"

  



  
    
      
    
    
      fuel_type()



        
          
        

    

  


  

      

          @spec fuel_type() :: String.t()


      


Returns a vehicle fuel type string
Examples
iex> Faker.Vehicle.En.fuel_type()
"Ethanol"
iex> Faker.Vehicle.En.fuel_type()
"E-85/Gasoline"
iex> Faker.Vehicle.En.fuel_type()
"Compressed Natural Gas"
iex> Faker.Vehicle.En.fuel_type()
"Gasoline Hybrid"

  



  
    
      
    
    
      make()



        
          
        

    

  


  

      

          @spec make() :: String.t()


      


Returns a vehicle make string
Examples
iex> Faker.Vehicle.En.make()
"Lincoln"
iex> Faker.Vehicle.En.make()
"Dodge"
iex> Faker.Vehicle.En.make()
"Chevrolet"
iex> Faker.Vehicle.En.make()
"Honda"

  



  
    
      
    
    
      make_and_model()



        
          
        

    

  


  

      

          @spec make_and_model() :: String.t()


      


Returns a vehicle make and model string
Examples
iex> Faker.Vehicle.En.make_and_model()
"Lincoln MKZ"
iex> Faker.Vehicle.En.make_and_model()
"Chevrolet Malibu"
iex> Faker.Vehicle.En.make_and_model()
"Ford Focus"
iex> Faker.Vehicle.En.make_and_model()
"Ford Focus"

  



  
    
      
    
    
      model()



        
          
        

    

  


  

      

          @spec model() :: String.t()


      


Returns a vehicle model string
Examples
iex> Faker.Vehicle.En.model()
"Encore"
iex> Faker.Vehicle.En.model()
"S5"
iex> Faker.Vehicle.En.model()
"Fiesta"
iex> Faker.Vehicle.En.model()
"X1"

  



  
    
      
    
    
      model(make)



        
          
        

    

  


  

      

          @spec model(String.t()) :: String.t()


      


Returns a realistic vehicle model string
for the given model.
Examples
iex> Faker.Vehicle.En.model("Ford")
"Focus"
iex> Faker.Vehicle.En.model("BMW")
"X5"
iex> Faker.Vehicle.En.model("Audi")
"A4"
iex> Faker.Vehicle.En.model("Toyota")
"Corolla"

  



  
    
      
    
    
      option()



        
          
        

    

  


  

      

          @spec option() :: String.t()


      


Returns a vehicle option string
Examples
iex> Faker.Vehicle.En.option()
"Premium Sound"
iex> Faker.Vehicle.En.option()
"Power Steering"
iex> Faker.Vehicle.En.option()
"A/C: Front"
iex> Faker.Vehicle.En.option()
"Keyless Entry"

  



  
    
      
    
    
      options()



        
          
        

    

  


  

      

          @spec options() :: [String.t()]


      


Returns a list of vehicle options()
Examples
iex> Faker.Vehicle.En.options()
["Power Steering", "A/C: Front", "Keyless Entry", "AM/FM Stereo", "Power Steering", "Antilock Brakes", "8-Track Player", "Leather Interior"]
iex> Faker.Vehicle.En.options()
["MP3 (Multi Disc)", "A/C: Rear", "Fog Lights", "Power Windows", "Cruise Control", "Premium Sound", "A/C: Front"]
iex> Faker.Vehicle.En.options()
["Tinted Glass", "MP3 (Single Disc)", "CD (Multi Disc)"]
iex> Faker.Vehicle.En.options()
["Fog Lights", "Rear Window Wiper", "MP3 (Multi Disc)", "Navigation", "Airbag: Side", "Rear Window Defroster", "Premium Sound"]

  



  
    
      
    
    
      options(number)



        
          
        

    

  


  

      

          @spec options(non_neg_integer()) :: [String.t()]


      


Returns a list of vehicle options of the given length
Examples
iex> Faker.Vehicle.En.options(3)
["Premium Sound", "Power Steering", "A/C: Front"]
iex> Faker.Vehicle.En.options(3)
["Keyless Entry", "AM/FM Stereo", "Power Steering"]
iex> Faker.Vehicle.En.options(3)
["Antilock Brakes", "8-Track Player", "Leather Interior"]
iex> Faker.Vehicle.En.options(3)
["Cassette Player", "MP3 (Multi Disc)", "A/C: Rear"]

  



  
    
      
    
    
      standard_spec()



        
          
        

    

  


  

      

          @spec standard_spec() :: String.t()


      


Reterns a vehicle standard option string
Examples
iex> Faker.Vehicle.En.standard_spec()
"Tire pressure monitoring system (TPMS)"
iex> Faker.Vehicle.En.standard_spec()
"20\" x 9.0\" front & 20\" x 10.0\" rear aluminum wheels"
iex> Faker.Vehicle.En.standard_spec()
"Deluxe insulation group"
iex> Faker.Vehicle.En.standard_spec()
"Torsion beam rear suspension w/stabilizer bar"

  



  
    
      
    
    
      standard_specs()



        
          
        

    

  


  

      

          @spec standard_specs() :: [String.t()]


      


Returns a list of vehicle standard specs
Examples
iex> Faker.Vehicle.En.standard_specs()
["20\" x 9.0\" front & 20\" x 10.0\" rear aluminum wheels", "Deluxe insulation group", "Torsion beam rear suspension w/stabilizer bar", "High performance suspension", "200mm front axle", "Traveler/mini trip computer", "P235/50R18 all-season tires", "Front door tinted glass"]
iex> Faker.Vehicle.En.standard_specs()
["625-amp maintenance-free battery", "Body color sill extension", "Cargo compartment cover", "Dana 44/226mm rear axle", "Tachometer", "Leather-wrapped parking brake handle", "Side-impact door beams"]
iex> Faker.Vehicle.En.standard_specs()
["Tilt steering column", "Luxury front & rear floor mats w/logo", "HomeLink universal transceiver"]
iex> Faker.Vehicle.En.standard_specs()
["Multi-reflector halogen headlamps", "Multi-info display -inc: driving range, average MPG, current MPG, average speed, outside temp, elapsed time, maintenance & diagnostic messages", "Zone body construction -inc: front/rear crumple zones, hood deformation point", "60/40 split fold-down rear seat w/outboard adjustable headrests", "Trim-panel-mounted storage net", "Front side-impact airbags", "Front/rear spot-lamp illumination"]

  



  
    
      
    
    
      standard_specs(number)



        
          
        

    

  


  

      

          @spec standard_specs(non_neg_integer()) :: [String.t()]


      


Returns a list of vehicle standard specs of the given length
Examples
iex> Faker.Vehicle.En.standard_specs(3)
["Tire pressure monitoring system (TPMS)", "20\" x 9.0\" front & 20\" x 10.0\" rear aluminum wheels", "Deluxe insulation group"]
iex> Faker.Vehicle.En.standard_specs(3)
["Torsion beam rear suspension w/stabilizer bar", "High performance suspension", "200mm front axle"]
iex> Faker.Vehicle.En.standard_specs(3)
["Traveler/mini trip computer", "P235/50R18 all-season tires", "Front door tinted glass"]
iex> Faker.Vehicle.En.standard_specs(3)
["XM satellite radio receiver -inc: 90 day trial subscription", "625-amp maintenance-free battery", "Body color sill extension"]

  



  
    
      
    
    
      transmission()



        
          
        

    

  


  

      

          @spec transmission() :: String.t()


      


Returns a vehicle transmission string
Examples
iex> Faker.Vehicle.En.transmission()
"CVT"
iex> Faker.Vehicle.En.transmission()
"Automatic"
iex> Faker.Vehicle.En.transmission()
"Manual"
iex> Faker.Vehicle.En.transmission()
"Automanual"

  


        

      


  OEBPS/dist/epub-7LKEGYS5.js
(() => {
  // js/helpers.js
  var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
  function r(e) {
    document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
  }

  // js/makeup.js
  var l = "hll";
  window.addEventListener("exdoc:loaded", t);
  function t() {
    o("[data-group-id]").forEach((e) => {
      e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
    });
  }
  function i(e) {
    let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
    n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
      u.classList.toggle(l, a);
    });
  }

  // js/entry/epub.js
  r(() => {
    t();
  });
})();




